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1. Introduction. Let X be a general abstract space of points x, and 
X a Borel c-field of sets in X. Let us consider a transition function 
p(-9 •) of the arguments xÇ.X, AÇ~% (see [2, p. 190]) which may be, 
however, sub-stochastic, i.e. where the usual assumption p(x, X) = 1 
is replaced by p(x, X)^l. The iterates pM of p are defined as usual 
(see e.g. [2, p. 191]). 

We shall always suppose that p is irreducible^ i.e. that the measures 
v*— ]Cn»i 2~np(n)(x, •) are equivalent for all x&X. A measure fi is 
called sub-invariant if it is cr-finite, not identically zero, and if 

(1) f p(x, A)ii(dx) <, tx(A) for all A <E X. 

If in (1) the sign of equality holds for all -4 £36, then fx is called in­
variant. 

THEOREM 1. If X is generated by a denumerable class of sets, then there 
always exists a sub-invariant measure for any p. 

The proof follows by a simple application of the results in [5] and 
[8] whenever ]C"„i p{n)(x, A) = oo for each x and each A satisfying 
vx(A) >0, and by putting /* = 2J£LI £(n)(#o> •) whenever 
ICn'-i £(n)(#o, -4) < oo for some x0 and some A such that vx(A)>0. 
However, there have been given also other, more complicated, con­
ditions for the existence of a sub-invariant measure (see [8], [4]). 

Let us assume in the sequel that we have some sub-invariant mea­
sure /x, and that this fi is equivalent to each *>«. It may be seen that 
the latter assumption causes no loss of generality (see [8]). 

Define the operator Ta) 1 Soc S °° (see [8]), in the space La(jj) by 

(2) T*f~ f f(y)p(-,dy). 

2. Classification of transition functions. Our basic classification is 
given by the following 

THEOREM 2. Each irreducible transition function p having a sub-
invariant measure \i belongs precisely to one of the following types : either 
]C*-i Pin)(x> A) = «o for each A such that JJL(A)>0 and each x (p is 
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then called recurrent), or ]C"-i £(n)(#> A)<<*> for each A such that 
lx(A) < oo and ix-almost all x (p is transient). 

Further, each recurrent p belongs precisely to one of the following 
types: either 

(3) lim n~l £ P(m)(*> A) 

exists and is positive for each x and each A such that ix(A)>0 (p is 
called positive-recurrent), or the limit (3) is zero for each x and each A 
such that jx(A) < oo (p is null-recurrent). 

The proof is based on the individual ergodic theorem VIII.6.6. in 
[3] for Ta, which gives the existence of (3), and on the ergodic theo­
rem for 53m-1 ÏT/ / ]LÎW-I T™g in [l] , which gives the rest of Theorem 
2. It may be shown that this classification does not depend on the par­
ticularly chosen n if there are more sub-invariant measures. 

By the results of [4}, it is easy to find that for a recurrent p the 
sub-invariant measure ix is invariant and essentially unique. 

COROLLARY 1. If p is positive-recurrent, then the measures given by 
(3) coincide for all x<EX, and are equal to a constant multiple of n\ hence 
lx(X) < co. If p is null-recurrent, or transient and such that p(x, X) = 1 
for ix-almost all x, then ix{X) = oo. 

3. Decomposition of T2. Let us now assume that there exists a 
decomposition of X into d+1 disjoint subsets Co, & , • • • , Cd-u D 
such that/*(£>) =0, and p(x,X — Cj+i)= 0 for each #£C;, j = 0,1, • • -, 
d — 1 (we put here Q = Co, and in the sequel also Ck = Cd+k whenever 
k <0). Furthermore, if A\, A^QCj for some j , and JJL(AI)>0, JU(-42) >0, 
let there exist, for each xÇ~X, some n = n(x) such that pin)(x, Ai) >0, 
pw(x, A2)>0. 

Recall also (see [lO]) that a contraction operator T in a Hubert 
space H is called completely nonunitary if the norms 

\\Th\\, ||r»4 • • •, llr-4 • • • ; ||r*4 ||r*«A||, • • •, ||r**||, •. • 
are not all equal to ||ft||, provided \\h\\ 5^0. 

THEOREM 3. Let the mentioned assumptions be satisfied. 
If p is positive-recurrent, then the Hubert space L2{ix) may be decom­

posed into the orthogonal sum of two sub spaces L(
2

u\n) and L^ip) such 
that the following assertions hold: L^ip) is the space of all functions f 
which are constant ^-almost everywhere on each Cf, both L^dx) and 
/40)(M) reduce T%\ the part of T2 in L^Qi) is a unitary operator having 
the form 
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]T e2*ikiâEk^ 

Ejc being some projections, E^O, El = Ek, EkEj = 0 for j^k, 2&-o Ek 

— I ( = the identical operator); the part of T% in I40)(M) is a completely 
nonunitary contraction. 

If p is null-recurrent or transient, then T2 itself is a completely non-
unitary contraction. 

The proof is based on the theorem of [lO] and on the following two 
auxiliary assertions: If there exists a function /G-^CM) such that 
/ ^ O and \\T2f\\ = ||/|| for all n = l, 2, • • • , then p is positive-recur­
rent. On the other hand, if p is positive-recurrent, and /GI^O*)* then 
|| :T£/|| =||/|| =| | 7f */|| for all n = 1, 2, • • • if, and only if, ƒ is constant 
/^-almost everywhere on each Cj. 

COROLLARY 2. Suppose that p is positive-recurrent, r is one of the 
numbers 0, 1, • • • , d — 1, and AQCj. Then p^md+r){x, A) converges 
weakly in L2(fx),for m—><*>, to the f unction 

pï\x) = dn(A)\p(X)Yl for x G CV-,, 

= 0 for x <£ Ck, k s* j — r, 

= arbitrary for x G D. 

Furthermore, if BCCk, then there is a complex-valued function <J>A%B 

integrable over [0, 2TT\ such that, for all m = l, 2, • • • and for k—j-*r, 

f p«****)(x,A)fi(dx) = d»(AMB)[fx(X)]-i + f V " < W W * . 
J B * 0 

If p is null-recurrent or transient, and if \x{A) < oo, then p^n){x, A) 
converge weakly in L2(fx) to 0, for n—* oo. Furthermore, if also y(B) < oo, 
then there is a complex-valued f unction 4>A,B integrable over [0, 27r] such 
that, for all n = 1, 2, • • • , 

pW(x, A)fi(dx) = I eint<t>AAl) dt. 
B * 0 

This corollary clearly embraces the classical results on the con­
vergence of transition probabilities in denumerable Markov chains, as 
well as their strengthening expressed by integral representations of 
transition probabilities in [6], [7]. It also strengthens some theorems 
in [9] for a general X. 

Full proofs of the results announced here, together with a number 
of related results, will be published later in the Transactions of the 
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Fourth Prague Conference on Information Theory, Statistical Deci­
sion Functions, Random Processes. 
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