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Consider a strongly elliptic quasilinear system of partial differential 
operators on an open subset 0 of Rn in generalized divergence form : 

(1) A(u) = X DaAa(x, « , • • • , Dmu). 
\<x\$tn 

If the coefficient functions Aa have at most polynomial growth in u 
and its derivatives, we have shown in [ l ] how existence theorems for 
solutions of variational boundary value problems for the equation 
A (u) —f may be obtained from monotonicity assumptions on the non­
linear Dirichlet form of A, with extensions to weaker ellipticity as­
sumptions in [3], [4], [9], and [15]. These results extend earlier 
theorems of Visik [18] obtained by other arguments, but (despite an 
apparent remark to the contrary in [l5]) do not extend automatically 
to the case of rapidly increasing coefficients treated by Visik in [ l9] . 
The crucial point for this more general case is that the Banach spaces 
in which the problems are appropriately formulated are derived from 
nonreflexive Orlicz spaces [14] and are themselves nonreflexive and 
nonseparable. On the other hand, the basic treatments of monotone 
and semimonotone operator equations have been carried out in re­
flexive Banach spaces (and in [15], it is even essential to consider 
only separable spaces). 

I t is our object in the present note to outline a treatment of these 
more general problems in nonreflexive spaces, using the remark al­
ready made by the writer in the final section of [4] on the useful 
properties of the weak* topology on a conjugate space. We formulate 
this treatment in a very general context of functional rather than 
simply differential equations, and apply to the resulting operator 
equations a new theorem on perturbation of semimonotone operators 
(Theorem 2 below) which is particularly efficacious in this general 
context. This result is extended and applied in more detail in [ l l ] 
to include all the elliptic results of [ l ] , [3], [4], [9], [IS], [18], and 
[ l9] , and a corresponding extension to unbounded operators and to 
monotone operators on convex sets gives a significant extension of 

1 The preparation of this paper was partially supported by N.S.F. Grant GP-
3552. 
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the results on nonlinear initial value problems developed in [2], [5], 
[7], and [9], (as well as of recent results for monotone operators on 
convex sets of the writer [lO] and Hartman and Stampacchia [13]). 

1. Suppose tha t for eaéh multi-index a with | a | ^ w , we are given 
a Banach space Xa of distributions on Ö with its dual space X* also 
a space of distributions and C"(fi)CX*. We set X = H « X a , x* 
= H a X*. Corresponding to this family of spaces, we have the gen­
eralization of the Sobolev spaces given by 

Wx* = {u\ u E D'(ti)} D«u G X* for | a\ g m}. 

Let f be the mapping of Wx* into X* given by f(w) = {Dau \ \ a \ ^ m}. 
We norm Wx* so that f is an isometry. Then f identifies Wx* with 
a weak* closed subspace of X*. 

The data of a nonlinear elliptic functional equation are the follow­
ing: We are given a subspace VQ of Wx* such that ?(F0) is weak* 
closed in X*, an element ƒ of X, and a continuous mapping Aa for 
each a of X* into X«. We define the nonlinear Dirichlet form a(u, v) 
for each u and v in Fo by 

(2) a(u, v) = (.4(««)), f 00) 

where A is the product map of X* into X with components Aa and 
(• ,•) denotes the pairing between X and X*. The corresponding 
boundary problem asks for an element u in VQ such that for all v in 
Fo, we have: 

(3) a(«, *) = (ƒ, f(»)). 

THEOREM 1. Suppose that the Dirichlet form a(u, v) satisfies the two 
conditions: 

(1) For all u, v of VQ 

a(u, u — v) — a(v, u — v) è 0. 

(2) 4*|H|-*+oof 

a(w, «0/IMI —> + 00. 

27^w tóe above boundary value problem has a solution for every ƒ in X. 

PROOF OF THEOREM 1. Let VQ be the polar of f (F0) in X, and let V 
be the quotient space X/V%, T the natural map of X on V. Then 
r* is an isometric map of V* into X*, and by the weak* closedness of 
t(Fo), it follows tha t r*(7*) ==f(F0). Hence, the mapping (r*)-1? is 
a well-defined isometric isomorphism of VQ on V*, and if for u and v 
in Fo, we set u* = (T*)-~1Ç(U), z ^^ r* ) " " " 1 ^ ) , we see that 
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a(u, v) = (A(£(u))9 r(i») = ( 4 r V , T V ) . 

Hence the condition that u be a solution of the functional equation (3) 
above is equivalent to the condition that the corresponding u* satisfy: 

(4) (AT*U*> T*V*) = (ƒ, r*v*) 

for all v* in F*, i.e. 

Mr*(W*), O = (r(/), **), 

or T(u*) =TAT*(U*) =r(f), with r = 7vlr*. 
The conditions (1) and (2) above are equivalent to the following 

conditions for the continuous mapping T of V* into V: 
(1)' For each pair ƒ and g of V*, 

(Tf-Tg,f-g)£0. 

(2)' As||/||^+a>,(r/,/)/||/|H+oo. 
The original problem will have a solution for a given ƒ in X if the 
corresponding r(f) lies in the range of T. However, the range of T is 
all of V by Theorem 5 of [4]. q.e.d. 

2. A corresponding translation process for the case where we dis­
tinguish between the dependence of the Dirichlet form a(u,v) on the 
highest and the lower order derivatives of u reduces the correspond­
ing existence result to Theorem 2 below. We preface the statement 
of the theorem with the following definition: A Banach space V is 
said to be improvable if there exists a continuous map M of V* into 
V mapping bounded sets into bounded sets which is monotone (i.e. 
(Mu — Mv, u—v)<£Q for all wand v), coercive (i.e. (Mu} u)/\\u\\—»+ °o 
as | | « | | - *+ °°) and such that if for a sequence {uk\ in V*, we have 
(Muk — Mu, Uk — u)—>0, then Uk converges strongly to u. 

THEOREM 2. Let V be an improvable Banach space, T a mapping of 
V* into V such that (Tu, «)/ | |w| |-->+00 as ||w||—>+<». Suppose that 
there exist mappings S of V*X F* into V and C of V* into Vfor which 
T(u)=S(u, u) + C(u) for all u in V* and which satisfy the following 
conditions: 

(1) For each fixed v in V*, S(',v) is a continuous monotone mapping 
of V* into V, i.e. (S(ui, v)—S(u, v), u—Ui) ^ 0 for all u and U\ in V*. 

(2) For each fixed u in V*, S(u, •) is completely continuous, i.e. 
continuous from the weak* topology of V* to the strong topology of V. 

(3) C is compact, i.e. C is continuous from 7* to V and maps each 
bounded subset of V* into a strongly precompact subset of V. 

(4) S dominates C in the following sense: If \uh\ is a sequence in 



92 F. E. BROWDER [January 

V* with uk converging weak* to u, and if (S(w&, uk)-~S(u, Uk), Uk — u) 
—»0, then C(uk) converges weakly to C(u). 

Then R{T)> the range of T, is all of V. 

COROLLARY TO THEOREM 2. The condition (4) may be replaced by 
the weaker condition: 

(4)' For every closed ball B about the origin in F*, T{B) is closed 
in V. 

REMARK. I t can be shown by simple examples that (1), (2), and (3) 
alone do not imply the conclusion that R(T) = F, even when F is a 
Hilbert space. 

PROOF OF THEOREM 2. Since we may subtract a fixed element w of 
V from T{u) without altering the hypotheses, it suffices to show that 
0GR(T). 

We show first tha t under hypotheses (1), (2), and (3), condition (4) 
implies (4)'. In the subsequent argument, only condition (4)' will be 
applied. We use the following fact in this and later proofs (cf. [4]): 
If Q is a continuous map of F* into F and if for given uo in F*, w0 in F, 
and all u in F*, we have (Q(u) — Wo, u—Uo) èO, then Q(u0) —w0. 

PROOF OF (4)' FROM (4). Let {uk} be a sequence in the closed ball 
B such tha t Tuk—*w. (We denote strong convergence by —» as usual, 
weak* convergence in F* or weak convergence in F by —\) Since B 
is weak* compact, we may assume that uk--*uf u<EB. I t suffices to 
show tha t Tu — w. Since C is compact, we may assume also that 
C(uk)-*wi. Then S(uk, Uk)ssT(uk)-'C(uk)—^w—Wu and by the com­
plete continuity of 5 in its second variable, S(u> Uk)->S(u, y). Hence 

(S(uk> uk) — S(u, Uk)y Uk — u) —* (w — Wi ~- S(u, u)9 u — u) = 0. 

Applying condition (4), we have Ciukj—^Ciu), i.e. C(u)=wi. Finally 
for any v in F*, we have for every k g: 1, 

(S(uk, uk) — S(v, uk), uk - v) ^ 0. 

As k—>+oo, S(uk, Uk)—*w~C(u), S(v, Uk)-^S(vf u)> and Uk — v-^u 
—v. Hence 

(S(uky Uk) — S(v, Uk)y Uk — v) —* (w ~~ C(u) — S(v, u)j u — v) è 0. 

Applying our earlier remark with Q(u) = S(fl, u), we see that S(u> u) 
= w—C(u)y i.e. T(u) —w, and T(B) is closed, q.e.d. 

LEMMA. For each \ > 0 , let T\~T+\M, where M is the mapping 
given in the definition of the improvability of V. To prove Theorem 2, 
it suffices to show that 0£-R(T\), for each X>0. 
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PROOF OF THE LEMMA. There exists a function c(r) on R1 with 
c(r)—>+ oo as r~»+ °° such that (Tuy u) *zc(\\u\\)\\u\\. For each X>0, 
(T\U, u) = (Tu, u) +\(Mu, u) è (Tu, u) for ||w|| è i£, independent of X. 
If rx^x = 0, it follows that either ||wx|| £R or c(\\u\\\) ^ 0 . Hence ||wx|| 
is uniformly bounded. Hence M(u\) is uniformly bounded. Choosing 
a sequence of Xfc—»0, we see that T(wx) = T\(u\) —\M(u\) = —\M(u\) 
—»0. Since the ^\ all lie in a fixed ball B, 0 lies in the closure of T(B). 
By condition (4)', 0 lies in T(B). q.e.d. 

PROOF OF THEOREM 2 COMPLETED. Let X > 0 be fixed. We wish to 
show tha t 0 lies in R(T\). We construct a one-parameter family of 
mappings Kt of V* into F* for O ^ / ^ l , in the following way: For 
*G[0, 1], let 

M<0, *) = (1 - t){S(p, u) + C(u) + \M(v)} + /JlfW. 

For each fixed / and u, Mt(-, u) is a continuous monotone mapping 
of V* into V, with (Mt(v, u)—Mt(yi, u), v—Vi)^\(M(v)—M(vi), 
v—Vi) and 

(Mt(v, u)9 v) ^ (Mt(v, u) - AT «(0, «), u) + (Jf ,(0, w), t>) 

^ X(M(*), *) - g(|H|)*. 

Hence (Mt(v, u), fl)/]|z>||-~>+ °° as ||z>||--»+ <*> (uniformly for bounded 
u) and by Theorem 5 of [4], there exists an unique element v = Kt(u) 
for which 

Mt(v, u) « 0. 

Since the fixed points of the mapping K$ are the zero points of T\, 
it suffices by the Leray-Schauder theorem [16] to verify the follow­
ing: 

(I) K\ is a constant map. There exists a constant M independent of t 
such that if Kt(u) — u for any t in [0, l ] , then ||#|| SM. 

(II) The map (t, u)—*Kt(u) is a continuous map of [0, l ] X V* into 
V* such that for any bounded set B, the image of [0, l ] XB is precom-
pact. 

PROOF OF (I). Since M\{v, u)—M(y), K\ is a constant map. If 
Kt(u) ~u, we have Mt(u, u) = 0. However, 

(Mt(u, u), «) = (1 - t)(Tu, «) + {(1 - OX + t}(Mu, u) è \(M(u),u) 

implies tha t in that case (M(u), u) gO, and ||w|| g M with a constant 
M independent of /. q.e.d. 

PROOF OF (II) . I t suffices to prove both of the following: 
(a) If Uj—>u, Vj — KtjUj—>v, tj—^t, then v — Ktu. 
(b) If Uj—*u, tj—>t, Vj — KtjUj-^v, then f or a subsequence, Vj—*v. 
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PROOF OF (a). We have C(u3)-*C(u), and for any z in V*, S(z, u3) 
—>S(zt u). Since Mtj(vj, Uj)=0> if we set Rt(v, u) = (l—t)S(y, u) 
{(1 — 0^+*} M(v), we see tha t Ui/vy, u3) = Mtfoj, u3) — (1 —tj)C(uj) 
-> ( l - / )C(w) . Since 

(jR .̂(z)y, %) — 2^.(z, «ƒ), Z>y — s) ^ 0, 

passing to the limit as j—>+ 00, we obtain 

( - ( 1 - 0C(«) ~ Rt(z, u), v - z) ê 0. 

Using our previous remark with (3(2) =Rt(z, u)y we see that -R*(tf, u) 
= — (l—t)C(u), i.e. Af<(*/, u)=0 and v = Kt(u). q.e.d. 

PROOF OF (b). Since C is compact and {UJ} is bounded, we may 
assume by passing to a subsequence that C(u3)—*wi. Using the map­
ping Rt defined in the proof of (a), we have 

Rtfoj* UJ) -> — (1 — t)wx. 

Since 

(Rtj(v, Uj) - Rtj(v, uj), v. - v) ^ \(M(v) - M(v), v, - v) ^ 0 

and 

(-Rf/ty, ^y) — #«,(*>, Uj), VJ — t>) -> (—(1 — 0^1 — ̂ tfo «), 0) = 0 

it follows that (M(vj)~- M(v), Vj—vj-^O and hence Vj—w. q.e.d. 
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