A NEW LOCAL PROPERTY OF EMBEDDINGS

BY O. G. HARROLD¹

Communicated June 30, 1965

It is known that the possible embeddings of a topological n-1 manifold M^{n-1} in the euclidean space E^n differ in the cases n=3 and n>3 in a curious way. A topological n-1 sphere can fail to be locally flat at an arbitrary finite number of points if n=3. For n>3 this cannot happen at a set consisting of a single point [2]. It is unresolved if an S^{n-1} in E^n can fail to be locally flat at a pair of points. In this note we introduce a new notion, described in detail below, called a locally weakly flat embedding and show that if a manifold M^{n-1} in E^n is locally flat at each point except possibly at the points of a finite set Y and if M^{n-1} is locally weakly flat at each point of Y, then M^{n-1} is in fact locally flat at every point. In the concluding paragraph an unsolved problem is posed.

Let $p \in M^k \subset E^n$, or more generally $M^k \subset M^n$. Suppose $\epsilon > 0$. Let B^n_{ϵ} be a ball of diameter less than ϵ whose interior contains p. For $0 < t \le \epsilon$ let B_t denote a ball whose interior contains p and is concentric to B^n_{ϵ} , i.e., regard B_t as a topological product $S^{n-1} \times [0, t]$ with $S^{n-1} \times [0]$ identified with p. For all t such that $\epsilon - t$ is sufficiently small we hypothesize that $\dot{B}_t \cap M$ is a k-1 sphere such that the pairs

$$(E^n, \dot{B}_t^n \cap M^k \times I^{n-k+1}) \approx (E^n, S^{k-1} \times I^{n-k+1})$$

are homeomorphic. If for a sequence of positive numbers $\epsilon_1, \epsilon_2, \cdots$ converging to zero, this condition holds, we describe the embedding by saying M^k is locally weakly flat at p. If this holds for all $p \in M^k$, M^k is locally weakly flat in M^n , denoted by LWF.

A comparison with other local properties of embeddings [3] shows that $LF = LU \Rightarrow LWF \Rightarrow LSPU \Rightarrow LPU$.

For n=3, k=2 these implications may be reversed [4]. There are examples, for n=3, that show that at a single point, local peripheral unknottedness, or local weakly flatness does not imply local flatness [5].

For n=3, k=1, LU and LPU are entirely independent. In this paper attention is restricted to k=n-1.

THEOREM. Let $M^{n-1} \subset E^n$ be a closed n-1 manifold that is locally

¹ Supported in part by NSF-Grant GP 4006.

flat at each point except possibly at the points of a finite set Y. Suppose that M^{n-1} is LWF at each point. Then M^{n-1} is locally flat at each point.

The proof rests on an adaptation of a theorem of M. Brown's to what I refer to as the "Turning Lemma" for annuli. The same idea can be used to establish a "Union Lemma" for n-1 disks in E^n .

Notations. In order to ease our descriptions we define once and for all the meaning of

- (1) nice k-disk in S^k , denoted by D^k ;
- (2) nice k-disk in E^{k+1} , denoted by D^k ;
- (3) nice k-annulus in S^k , denoted by A^k ;
- (4) nice k-annulus in E^{k+1} , denoted by A^k .

By (1) we mean the boundary ∂D^k of D^k has a shell neighborhood in S^k . By (2) we mean that D^k is the image of an equatorial plane section under some homeomorphism of a standard k+1 ball into E^{k+1} . By (3) we mean each boundary component of ∂A^k , the boundary of A^k , has a shell neighborhood in S^k . By (4) we mean A^k is the image of an equatorial plane section under some heomormophism of a standard $I^2 \times S^{k-1}$ into E^{k+1} .

Some recent results needed for the proof. 1. Let h be a homeomorphic embedding of $S^n \times [-1, 1]$ into S^{n+1} , where [a, b] denotes the closed real number interval $a \le t \le b$. Then the closure of either complementary domain of $h(S^n \times [0])$ is an (n+1)-cell (Theorem 5 of A proof of the generalized Schoenflies theorem, M. Brown).

- 2. Let B be a subset of a metric space X. Suppose $B = U_1 \cup U_2$, where U_1 , U_2 are open in B and $U_1 \cap U_2 \neq \square$. If both U_1 , U_2 are collared in X, then B is collared in X. If B is an orientable bounded manifold of dim n in E^{n+1} , and B is collared on each "side," B is bicollared at each point of $B \setminus \partial B$. (Lemma 4 of Locally flat embeddings of topological manifolds, M. Brown [1]).
- 3. Let D_1 and D_2 be topological *n*-disks in E^{n+1} . Suppose each of D_1 and D_2 is nice (see above under Notations). Let $D_1 \cap D_2 = \partial D_1 \cap \partial D_2 = S^{n-1}$. Suppose S^{n-1} lies in the interior of a nice annulus A that is a subset of $D_1 \cup D_2$. Then $S = D_1 \cup D_2$ is nice.
- 3'. Let \tilde{D} and \tilde{A} be respectively a nice n-disk, a nice n-annulus in E^{n+1} . Suppose $\tilde{D} \cup \tilde{A}$ is a disk. Further $\partial \tilde{D}$ lies in Int \tilde{A} . Then $\tilde{D} \cup \tilde{A}$ is a nice disk in E^{n+1} . The proofs of 3 and 3' are so similar to that of 3" we omit them.

² The symbol "int" occurs in two senses. The meaning will be clear since in one case it means the bounded component of the complement of a set and in the other case it refers to the points not on the combinatorial boundary of some manifold with boundary.

3". THE TURNING LEMMA. Let F be a homeomorphism, $F: S^{n-1} \times I^2 \to E^{n+1}$. Let I_1 and J_1 be intervals lying in the interior of I^2 such that $I_1 \cap J_1 = \{0\}$, an endpoint of each of them. Suppose

- (i) $F \mid \hat{S}^{n-1} \times I_1 = A_1$, $F \mid \hat{S}^{n-1} \times J_1 = A_2$, and
- (ii) $F | S^{n-1} \times \{0\} = S^{n-1}$.

Then $A_1 \cup A_2$ is nice in E^{n+1} .

To put it another way, whenever two n-annuli A_1 and A_2 are nice in E^{n+1} and their common part is a component S_{12} of the boundary of each of them, and if F satisfies the *consistency* conditions (i) and (ii) above, then $A_1 \cup A_2$ is nice.

PROOF. Let g be a homeomorphism of I^2 on I^2 so that $I_1 \cup J_1$ is carried onto $I_1 \cup J_1$ carrying $\{0\}$ into an inner point of J_1 , leaving the other endpoints fixed, and also leaving the points of $S' = \partial I^2$ fixed. Then

$$G(x, y) = F(x, g(y))$$

defines a homeomorphism of $S^{n-1} \times I^2$ onto $F(S^{n-1} \times I^2)$ and A_1 onto $\tilde{A}_1 \langle \text{say} \rangle$. Then $\text{Int}(A_1 \cup A_2) = \text{Int } A_2 \cup \text{Int } \tilde{A}_1$ and $\text{Int } A_2 \cap \text{Int } \tilde{A}_1$ is open and non-null. Then if $B = (\text{Int } A_2) \cup (\text{Int } \tilde{A}_1)$, B is collared, and, in fact bi-collared. Hence $A_1 \cup A_2$ is nice in E^{n+1} .

PROOF OF THE THEOREM. Let p be a point of Y and ϵ sufficiently small that $S(p, \epsilon) \cap (Y \setminus p) = \square$ (the empty set).

Let B_1, B_2, \cdots be a sequence of balls with diameter approaching zero that are "concentric" about p, each of which meets M nicely, as guaranteed by the condition $(E^n, \dot{B}_t^n \cap M \times I^2) \approx (E^n, S^{n-2} \times I^2)$. The spheres $\dot{B}_1, \dot{B}_2, \cdots$ may be taken disjoint. Let \dot{B}_i and \dot{B}_{i+1} determine an annulus A_i on M. Since $\dot{B}_i \cap M$ is nice in M, a homeomorphism of B_i onto itself moving points an arbitrarily small amount may be defined to insure A_i is an annulus. The boundary components of A_i are denoted by S_i and S_{i+1} . Let B_i be decomposed by S_i into two components C_i^N and C_i^S , whose closures are closed n-1 disks and the notation is chosen so that C_1^N , C_2^N , \cdots all lie on the same side of $E^n \setminus M$. Since S^{n-2} is nicely embedded in E^n , it is clear that the consistency conditions required in the hypotheses of 3' above hold for S_i relative to A_i and C_i^N . Hence $A_i \cup C_i^N$ is a nice disk F_i . Since S_{i+1} is nice relative to C_{i+1}^N and A_i , $C_{i+1}^N \cup A_i$ is a nice n-1 disk G_i . The conditions of 3 (above) are fulfilled so that $F_i \cup G_i$ is a flat n-1 sphere. By passing n-1 planes parallel to the base of an n-simplex that converge to the a

³ Such a homeomorphism is easily found via the plane Schoenflies theorem.

⁴ This is the content of Lemma 4 of [1].

vertex, one may slice the n-simplex into a sequence of nice n-cells σ_1^n, \cdots with diameters approaching zero. By mapping each σ_i^n to $F_i \cup G_i$ so that the consecutive functions agree on the common face of σ_i^n and σ_{i+1}^n , the manifold M is seen to have a collar at p relative to the complementary domain determined by C_1^N, \cdots . A similar construction of the other side of M shows that M is in fact locally bi-collared at p.

By noting that the set Y of M consisting of points where M fails to be locally flat is closed, it is easy to extend the above theorem to the case cardinal of $Y \leq \mathfrak{R}_0$.

Added in proof. COROLLARY. If S is an n-1 sphere that is locally flat except possibly at two points p and q and if S is LWF at either p or q, then S is flat.⁵

A question we have been unable to resolve is contained in the following.

PROBLEM. If M^{n-1} is LWF, is it LF in M^n ? The result is known to be true for n=3.

REFERENCES

- 1. M. Brown, Locally flat embeddings of topological manifolds, Ann. of Math. 75 (1962), 331-341.
- 2. J. C. Cantrell, Almost locally flat embeddings of S^{n-1} in S^n , Bull. Amer. Math. Soc. 69 (1963), 716-718.
- 3. O. G. Harrold, Combinatorial structures, local unknottedness and local peripheral unknottedness, Topology of 3-manifolds and related topics, Prentice-Hall, Englewood Cliffs, N. J., 1962; pp. 71–83.
- 4. ——, Locally peripherally unknotted surfaces in E³, Ann. of Math. 69 (1959), 276-290.
- 5. ——, Locally tame curves and surfaces in three-dimensional manifolds, Bull. Amer. Math. Soc. 63 (1957), 298.

FLORIDA STATE UNIVERSITY

⁵ One may define a concept of M^{n-1} being LWF with respect to the complementary domain A (or the other complementary domain B) and derive a similar result.