RESEARCH PROBLEMS

18. Fred Gross: Function theory

Let S be an arbitrary region. Does there exist a transcendental meromorphic function with the property that the pre-image $f^{-1}(S)$ is of finite measure? (Received July 16, 1965.)

19. Fred Gross: Function theory

In Volume 4 of the Michigan Mathematical Journal Paul Erdös asked the following question:

If A and B are two denumerable dense sets, does there exist an entire function which maps A onto B?

This problem is quite difficult. One can ask, however, a simpler question.

Do there exist two dense denumerable sets A and B, such that, $f(z) \in A$ if and only if $z \in B$ implies that f(z) is linear? More generally, do there exist two linearly independent functions f(z) and g(z) such that $f(z) \in A$ if and only if $g(z) \in B$. (Received July 16, 1965.)

20. Albert A. Mullin: Stochastic number-theory

The probability that a random natural number has the prime factor p is 1/p. Hence the probability that two random natural numbers have the common prime factor p is $1/p^2$. Thus, the probability that two random natural numbers have no common prime factor (i.e., the probability that they are relatively prime) is $\prod_p (1-1/p^2)$ $= 1/\zeta(2) = 6/\pi^2$, by Euler's Identity (an *analytic* version of unique factorization. What is the probability that two random natural numbers satisfy the condition that their *mosaics* have no prime in common? Clearly this measure is strictly positive but it is bounded above by $6/\pi^2$. To what extent is statistical *dependence* crucial to the argument? What is the probability that a random natural number has only odd primes in its mosaic? (Received July 16, 1965.)

21. Richard Bellman: Differential equations

The equation $u'(t) = (a+bu(t_1))u(t)$, u(0) = c, valid for $0 \le t \le t_2$, with $t_2 > t_1$, shows that an equation of the form $u'(t) = g(u(t), u(t_1), u(t_2), \cdots, u(t_N))$, u(0) = c, $0 < t_1 < t_2 < \cdots < t_N$, can have an infinite number of complex solutions and more than one real solution. What additional conditions on the solution ensure uniqueness of a real solution? (Received July 16, 1965.)

22. Richard Bellman: Partial differential equations

Mathematical models of respiratory control processes lead to partial differential equations of the form

$$u_{t} + g(u(x, t), u(x_{1}, t), \cdots, u(x_{N}, t))u_{x} = h(x, t),$$

where the equation holds for $t \ge 0$, $-\infty < x < \infty$, and u(x, 0) is prescribed. Under what conditions can one assert that a unique solution exists?

Consider similar problems for the heat equation. (Received July 16, 1965.)

23. A. H. Stroud: Factorization of Hankel matrices

Find a Jacobi-like algorithm for factoring an arbitrary real Hankel matrix C

$$C = \begin{bmatrix} c_0 & c_1 \cdots c_{n-1} \\ c_1 & c_2 \cdots c_n \\ \vdots & \vdots & \ddots & \vdots \\ c_{n-1} & c_n \cdots c_{2n-2} \end{bmatrix}$$

in the form

 $(1) X^T A X = C$

where X is a Vandermonde matrix and A is diagonal

$$X = \begin{bmatrix} 1 & x_1 & \cdots & x_1^{n-1} \\ 1 & x_2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \cdots & x_n^{n-1} \end{bmatrix}, \qquad A = \begin{bmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_n \end{bmatrix}.$$

The solution of this problem would be a method for determining a quadrature formula

(2)
$$\int_{a}^{b} w(x)f(x) dx \cong \sum_{i=1}^{n} A_{i}f(x_{i})$$

which is exact for all polynomials of degree $\leq 2n-2$, provided we set

$$c_i = \int_a^b w(x) x^i dx, \qquad i = 0, 1, \cdots, 2n-2.$$

If det $C \neq 0$ then there is a one parameter family of quadrature

854

formulas (2) and hence of factorizations (1). Quadrature formulas (2) can be constructed using orthogonal polynomials. (Received July 16, 1965.)

24. Analytic function theory

A Symposium on Analytic Function Theory was held at the University of Kentucky, May 28–June 1, 1965, with support from the University of Kentucky Research Fund.

The following is a list of problems drawn up by members of the Symposium.

A. Let \mathfrak{A} , H^{∞} , and A denote respectively the space of all analytic functions defined on the unit disc D, the space of bounded analytic functions on D and the space of analytic functions on D that extend continuously to \overline{D} . Can any one of these be decomposed into the direct sum of two nontrivial closed subalgebras B_1 and B_2 ? For example, in the case of A, could $B_1 = \{f(z^2) | f \in A\}$?

B. Let C- be the closure in L^{∞} (of the circle with Lebesgue measure) of those functions whose negative Fourier coefficients are zero, except for possibly a finite number. For example, continuous functions, boundary values of functions in H^{∞} , and continuous functions times functions in H^{∞} are in C-. How can the class C- be characterized?

C. Let \mathfrak{M} denote a closed subalgebra of H^{∞} . To say that \mathfrak{M} is an *intrinsic* algebra means that $f \circ \phi$ is in \mathfrak{M} whenever f is in \mathfrak{M} and ϕ is a conformal one-to-one map of the unit disc onto itself (ϕ is a linear fractional transformation). Classify the intrinsic subalgebras of H^{∞} . Is the algebra A, (see problem A) a maximal intrinsic algebra? The algebra generated by the Blaschke products is an intrinsic algebra. It is H^{∞} ?

D. The following theorem is due to D. J. Newman.

THEOREM. If f_n is a sequence of functions in H^1 (of the circle) and f is in H^1 such that

(a) $\lim_{n\to\infty} ||f_n||_1 = ||f||_1$, and

(b) f is the weak limit of f_n ; then

$$\lim_{n\to\infty} \|f_n - f\|_1 = 0.$$

Is there an analogue of this result for $H^1(dm)$ of a Dirichlet algebra?

E. Let Ω be a simply connected region that contains the upper half

1965]

plane and has 0 as a boundary point. Let f be the conformal map of the upper half plane onto Ω such that f(i) = i and f(0) = 0. What conditions are needed on the boundary of Ω in order that there be an inequality of the form $|f(z)| < c|z|^{1-\delta}$ with small positive δ , valid for |z| < 1, Im $z \ge 0$?

F. A bounded holomorphic function on |z| < 1 can be approximated by sums $R_n(z) = \sum_{1}^{n} (z_{n,k} - z)^{-1}$ with $|z_{n,k}| = 1$ for $k = 1, 2, \dots, n$. Can this be done in such a way that $(1 - |z|)R_n(z)$ converges boundedly on the disc to (1 - |z|)f(z) as n approaches ∞ ?

G. Let Γ be a Jordan arc on the Riemann sphere S. Denote by A_{Γ} the class of functions continuous on S and analytic on $S-\Gamma$.

(a) Let f be a nonconstant member of A_{Γ} such that $f(\infty) = 0$. Must f have infinitely many zeros on $S - \Gamma$? It is known that f vanishes somewhere on Γ .

(b) Does there exists a pair of functions f and g in A_{Γ} such that f and g together separate points on S? It is known that there exists a set of three such functions with this property.

H. An entire function $F(z) = \sum_{0}^{\infty} a_n z^{pn} = \phi(z^p)$, where p is an integer and the order of F is ρ , must have many of the properties of a function of order ρ/p . For example, if $p > 2\rho$, F can have no asymptotic paths. If $p > \rho$, then the minimum modulus result for ϕ gives

 $\limsup \{\log m(r)/\log M(r)\} \ge \cos(\pi \rho/p).$

The growth indicator $h(\theta)$ must reach its maximum in any angle of opening π/p .

How far can these results be extended to entire functions $\sum_{0}^{\infty} a_n z^{\lambda_n}$ in which the sequence of integers λ_n has density less than 1/p in some sense?

I. If f is a continuous function from the unit circle C to the complex numbers, does there exist a homeomorphism ϕ from C to C such that $f \circ \phi$ has a uniformly convergent Fourier series? This is known to be true if f is real valued, or if f(C) is a Jordan curve.

J. Is the space of all Keldyš-Lavrentieff maps connected, i.e. the set of all univalent functions f from the unit disc D such that |f'| = 1 a.e. on the boundary of D?

K. Find conditions on subsets A and B of the unit disc D so that there will exist a holomorphic function ϕ from D to D so that $\phi(A)$ is near zero and $\phi(B)$ is near the boundary of D. L. Suppose U is the unilateral shift operator on H^2 (of the unit circle). What are the cyclic vectors of U^* ?

M. Let S denote the set of all schlicht functions on the unit disc D. If $f \in S$ and $g(z) = \int_0^z (f'(t)) dt$ where ϵ is in (0, 1), does this imply $g \in S$? The answer is known to be yes for $0 < \epsilon < (\sqrt{5}-2)/3$.

N. If f is analytic in the unit disc D, and $|f(re^{i\theta})| < 1/(1-r^2)$, for what positive real numbers α is it true that $|f'(re^{i\theta})| < \alpha/(1-r^2)^2$? It is known that $\alpha = 4$ will suffice. What is the coefficient region for this class?

O. Let $C = \{z: |z| = 1\}$ and $L_2^{0+}(C)$ be the set of all $q \times q$ matrix valued functions Ψ on C such that $\Psi \in L_2(C)$ and for all k < 0, $\int_0^{2\pi} e^{-ki\theta} \Psi(e^{i\theta}) d\theta = 0$. Write A > B to mean that A - B is a $q \times q$ nonnegative hermitian matrix. It is known that, if

(1) F > 0 a.e. on C, $F \in L_1(C)$, and log det. $F \in L_1(C)$, then

(2) $F = \Phi \Phi^*$ a.e. on C, where $\Phi \in L_2^{0+}(C)$.

It is also known that in (2) we may take Φ to be optimal (or "outer"), i.e. satisfy the condition:

(3) if $\Psi_+ \in L_2^{0^+}(C)$ and $\Psi_+ \Psi_+^* = F$ a.e. then $\sqrt{\{\Psi_+(0)\Psi_+^*(0)\}} < \Phi_+(0)$, where Ψ_+ denotes the holomorphic extension of $\Psi \in L_2^{0^+}(C)$ to the disc [z: |z| < 1], and $\sqrt{}$ is the non-negative hermitian square root.

In case q = 1 we know

(4)
$$\Phi_+(z) = \exp \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \log F(e^{i\theta}) d\theta, \quad |z| < 1.$$

The problem is to obtain a generalization of (4), i.e. a (closed form) expression for $\Phi_+(z)$ in terms of $F(e^{i\theta})$ valid for all $q \ge 1$.

P. Let R be a bounded simply connected region in the complex plane. For each n, there exist "equilibrium points" $z_{n,1}, z_{n,2}, \dots, z_{n,n}$ on the boundary of R with the property that $\prod_{j \neq k} |z_{n,j} - z_{n,k}|$ is an absolute maximum. Is it true that electrons at such points $z_{n,k}$ produce a small field in R, in the sense that, as $n \to \infty$

$$\sum_{k=1}^n \frac{1}{z_{n,k}-z} \to 0$$

uniformly on every compact subset of R? The answer is yes, if R is a Jordan region. (Received July 28, 1965.)

1965]