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This work is a sequel to [ l ] : In [ l ] we considered the vanishing of 
the first cohomology groups with coefficients in 0, 0* for sets X\A 
whereas in the present work we consider the same question for higher 
cohomology; a t the same time we obtain some additional results for 
the first Cousin problem. As in [ l ] we take n^3. 

Scheja [3] proved that if X is an open set in Cn and A is an ana­
lytic closed subset of X of dimension Sn — q — 2, then the natural 
homomorphism 

(1) H*(X,0)-*H*(X\A,0) 

is bijective. We shall prove: 

THEOREM 1. Let A be a closed bounded generalized poly disc in an open 
set X of CX Then the natural homomorphism (1) is bijective for any 
l^q^n-2. 

PROOF. Set A = LiX • • • XLn and let K = KXX • • • XKn be an 

open generalized polydisc with A C K C K C X. Set V = L2 X • • • 
XLn, K' = K2X • • • XKn, Go = (Xi \L 1 )XX / , ft=J5TiX(2i:'\L')i 
G — Go^JGi. By a straightforward generalization of [3, Hilfsatz] one 
gets Hq(G, 0)=O. We now introduce a covering U={Ui) of X\A 
where all the Ui are domains with Hq(Ui, 0) = 0 and precisely q + 1 
of them, say Z7»0, • • • , Uiq, coincide with G. By Leray's theorem [2], 
the canonical homomorphism 

(2) E*(N(U), 0) -» H*(X\A, 0) 

(where N(U) is the nerve of U) is bijective. 
We next introduce a covering U' — { U{ } of X where U^ = • • • 

= U'iq = KiXKf and Ui = Ui for all other indices i. Again, the canon­
ical map 

(3) H*(N(Ur), 0) -> H«(X, 0) 

1 This work was partially supported by the Alfred P. Sloan Foundation and by the 
NASA Grant NGR 14-007-021. 
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is bijective. We shall now construct a map 

(4) H«(N(U), 0) -> Hq(N(U'), 0). 

Let fÇzHq(N(U), 0). We may view it as a g-cocycle. Let/ Î Q . . .^ be the 
section of ƒ on UiQC\ • • • r\Uiq = G. The proof of Lemma 3 in [ l ] 
can be extended to show that ƒ,•„.• •»« can be continued analytically 
to KiXK'. The continued function/^. . .^ thus obtained is defined 
on U'içf^ - - • r\U'tq. We now define fjQ...jq for any set of distinct in­
dices {j0, • • • fjq} which does not coincide with the set {i0, • • • ,iq}» 
Since among the jh s there is at least one index, say i, with i^ik for 
all 0 ^ k ^ q, and, consequently, JJ[ — Ui C X\A, we have 
UIC\ (KiXK') = U{ni G. Hence U'kC\ - • • C\Uf

jq = UhC\ • • - C\Uh 

and we can take//0...yff=/y0•••;«• 
We have thus defined a g-cochain ƒ on N( U').f is cocycle. Indeed, 

observing that U'j(f\ • • • ^Ujq+1 coincides with Ujor\ • • • r^Ujq+1 

if all the j * are distinct from each other, and that the analytic function 
flo"•%"'3Q+i restricted to either of these sets coincides with f}-0...jv..,jq+1, 
the equation 5 /=0 implies ô/' = 0. 

We next show that if f=ôg then there is a (q — l)-chain g' with 
hg'=f. If (a) {jo, • • • , jq-i} C{io, • • - ,*"«} then we take g ^ . . . ^ 
to be the analytic continuation of g^v-ia-i t o ^ / 0 ^ " ' * ^^/«-i» 
whereas if (a) does not hold then Uj0 H • • • r\ Uf

jq_1 

= Uhr\ • • • CMJj^ and we take gvw*-i = g>o •••;*-!• w i t h g' t h u s 

constructed, the relation hg' =ƒ ' over L^on • • • HÜJg in case (b) 
{jo, • • • , jq} = {io, • • • , iq\ follows from the relation 8g=f over 
Ujor\ • - - r\Ujq by analytic continuation, whereas in case (b) does 
not hold it coincides with the relation ôg =ƒ over Uj0C\ • • • C\Uj . 

We have thus shown that the map ƒ—»ƒ' defines a homomorphism 
(4). This map is surjective since, given ƒ', its restriction ƒ to N(U) is 
mapped into ƒ by the above map. I t is also injective since if f ~ôg' 
for some (g — l)-cochain g' over N(U'), then the restriction g of gf to 
iV(E/) clearly satisfies ƒ =Sg. Noting finally that the map ƒ—>ƒ' is the 
inverse of the restriction map, and combining (2)-(4), (1) follows. 

COROLLARY. If Hq(X, 0) = 0 then Hq(X\A, 0) = 0. In particular, ij 
X is Cousin I then X\A is Cousin I. 

THEOREM 2. Let A, B be two closed bounded subsets of an open set 
XC.C" and let P be a closed generalized polydisc with A C int P C P 
C int B. If, for some l^q^n — 2, the natural homomorphism 

(5) Eq(X\A, 0) -> Hq(X\B, 0) 

is injection, then there exists a homomorphism X : Hq(X\A, 0) —*Hq(X, 0) 
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such that 7rX = identity, where w is the map (1) (and, consequently, ir is 
surjective) ; in particular, if Hq(X, 0) = 0 then Hq(X\A, 0) = 0. 

PROOF. Take coverings U\ U\ U\ U* of X, X\A, X\P, X\B re­
spectively whose open sets are domains of holomorphy and such that 
the sets of U{ (i = 2, 3, 4) are among the sets of J7*"1. Given ƒ2 
Ç:Hq(N(U2), 0) there corresponds to it (by restriction) a unique ele­
ment/4 in Hq(N(U4), 0) and a unique element fz in Hq(N(Uz), 0) ; 
f A is the restriction of fz. By Theorem 1 there exists s.nfiE.HQ(N( U1), 0) 
whose restriction to N( Uz) is /3. Hence the restriction of f\ to N( Z74) 
is/4 . Since/i and/2 have the same restriction on N( Z74), the injectivity 
of (5) implies that the restriction of / i to N( U2) is /2. Thus the map 
/a-»/i is an inverse of the restriction map Hq(N(Ul), 0)->Hq(N(U2), 0). 
The assertion of the theorem now follows with X being the image of 
the homomorphism /2—>/i under the canonical map corresponding to 
Hq(N(U2), e)-*H*(X\A, 0), H^NiU1), Q)-*H*(X, 0). 

GENERALIZATIONS. By successive applications of Theorem 1 we get: 
(1) If A\, • • • , Am are closed bounded generalized polydiscs such 

that AjC\Ak = 0 if j^k, then the natural map 

H*(X, 0) -> H* (x\( U A?J, 0) 

is bijective. 
(2) Theorem 1 extends to the case where X is an open set on a 

complex manifold provided A is contained in one coordinate patch 
and its image in Cw is a generalized polydisc. Theorem 2 and (1) 
have similar extensions. 

By slightly modifying the proof of Theorem 1 we obtain : 
(3) I f Z = XiXü:3,+iX • • • XKn,A=AiXKP+1X • • • XKnwhere 

X\ is any open set of Cp and Kj is an open set in the zy-plane, then the 
homomorphism (1) is bijective if l â ( Z â £ - - 2 . 

(4) If A in Theorem 1 is convex, then (see [l]) Hq(G, 0*) = 0 . By 
modifying the proof of Theorem 1 we find that the natural homo­
morphism 

H*(X, 0*) -> H*(X\A, 0*) 

is bijective. The analogs of Theorem 2 and (l)-(3) are also valid. 
We shall now give a different approach to proving results similar 

to Theorem 1. Since this approach does not yield a result as general 
as Theorem 1, we shall only sketch it. Let X = KiX • • • XKn, 
A =LiX - • • XLn be generalized polydiscs. We say that the con­
dition (Am) holds if for each j = l, • • • , m either (a) K\ is the whole 
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plane C and then Ly is an arbitrary closed bounded subset of 2£y, or 
(b) Kj=C and then Lj consists of a finite number of points. The Lj 
for j = w + l , • • • , n are arbitrary closed subsets of Kj. 

THEOREM 3. If (Aw) holds f or some l^m^n then H«(X\A, 0)=O 
for 1 g q ^ min(w — 1, n — 2). The relations Hn~l(X\A, 0) ?* 0, 
HQ(X\A, 0) —Q for q^n are valid under the assumption (AQ). 

PROOF. Setting Ay = X!X • • • XX/-iX(XAL,)X-Ky+iX • • • XX» 
and noting that Hq(Aj, 0) = 0 for q^ 1, it suffices to consider Hq((U), 0), 
where C7= {Ax, • • • , A n } . We consider only the case l^q^n — 2. 
Denote by Iil...ih(h) the Cauchy integral of A with the ith contour 
being dKi if i^jp for all p, and dit- if i = j P for some p. (Actually one 
should replace dKm, dLm by smooth ôi£m>e, dLm,€ which approximate 
dKm, dLm.) Then we can represent each component /»0...»g of a g-
cochain ƒ by 

(6) ƒ»„ . . .iq = 2^ Zj I*iX ' ' -fybCfto ' • • < « ) • 
*-0 0;h<"'<Jk 

LEMMA 1. Consider a domain D = K\L in the complex plane, where 
K is the whole plane and L is any closed bounded set with C1 boundary 
dL. Let <t>(z) be any analytic f unction in D and let \f/(z) be any continuous 
function on dL such that 

for all R sufficiently large. Then$ for all R sufficiently large, 

J m-fl ? — z J dL £ — z 

f «HQ-Ç -M.#-0* .Z>n{ , ; | . |<*} . 
J |f|«.J? f — 2 «ZôL ^ — Z 

A similar result holds in case K is a bounded set with C1 boundary 
and L consists of a finite number of points. Using these results, the 
condition ô /=0 implies the following system of equations: 

If i0< • • • <ihûtn<ih+i< • • • <iq+i for some 0^h^q+lt and 
if ijx< • • • <ijk^m for some O^k^h, then 

(7) £ Z ^••• .WX 1 . . .A, (E(-I ) 'A-^-<. ) = O, 
j>-0 M-l;Xi<.. .<Xp \ y-0 / 

where in the third summation vj^ju • • • ,vj*jk and P?*XI, • • • , ^ X „ . 
To find g satisfying 5g=/, we try to represent g»v*«-i analogously 

to (6), and then the relation ôg=f is a consequence of the following 
system of equations: 
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If io< • • • <%-i^in<ih< • • • <iq for some O^A — l ^ g , and if 
ijx< • • • <ijk^m for some O^fe^fe — 1 , then 

fl— fc+l q / q \ 

Z-r 2LI liix ' ' 'ij'k^l • • '*Xp I 2l^ C ~~ v"£*0 •••«*•••*&) 
. . P=0 A;Xi< • • -<Xp \ v=0 / 

^ ' fl-M-1 « 

,2-f 2^j ^ij'i • • *̂ ifciXi • • 'iXpV/ïo • • 'kJ SSS ") 
p=0 A;Xi< • • -<Xp 

where in the third summation of the first term v^ju • • • » P^ i* and 
P T ^ X I , • • • , ^ = X P . 

Using (7) we can solve (8) as follows: If i o > l , or if i0 = l , i ; i > l 
then g.-o...<ff-i=/«o---*ff-i. H *'o = *ii = l and if i i > 2 or ii = 2, i ; 2>2 then 
^*o""*fl-i=/2*'o-"<«-i' We proceed in this manner and finally define, in 
case i0 = iyx = l, • • • , ik-i = ijk = ki gi0.*-iq-1=

sfk+iti0..-iq-.v 

This method extends also to the situations described in (1), (3) 
above. 

Added in proof. The relation H*~*(X\A, 0) ̂ 0 holds if in (3) Xi and 
Ai are both generalized polydiscs. Taking Çlm = Xm\Am where Xm, Am 

are generalized polydiscs with Xm\ X, Am/A one derives, for fixed 
ltkqSn — 2, examples of domains Qm with öw-OQTO, such that 
Hr(Qm, 6 ) = 0 for l ^ r ^ w - 2 but i3"*(Q, 0 ) ^ 0 where Î2 = int(lim 0m). 

By Dolbeault's theorem, H«(Q, 0) = 0 if and only if for any C°°(£2) 
form ƒ of bidegree (0, q) with d / = 0 there is a C°°(fi) form u with 
du—f. By modifying the proof in [2, p. 29] we find: If for some 
q > 1, Sm C Qw+it 0 = l i m û»i Hr(Qmi 0) = 0 for r = g — 1, £, then 
iI«(Q, 0) = 0 . Also if IPCûm, 0) = 0 and if for any u holomorphic in 
0m and e > 0 there is a v holomorphic in Qw+i with | u— v\ <e in flw-i, 
then Hl(Q, 0 )=O; this can be applied to Qm = Xm\Am as in [l, 
Theorem 3] . 
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