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This work is a sequel to [1]: In [1] we considered the vanishing of
the first cohomology groups with coefficients in 0, 0* for sets X\4
whereas in the present work we consider the same question for higher
cohomology; at the same time we obtain some additional results for
the first Cousin problem. As in [1] we take n=3.

Scheja [3] proved that if X is an open set in C* and A4 is an ana-
lytic closed subset of X of dimension <#—g¢—2, then the natural
homomorphism

m H(X,0) — H(X\4, 0)
is bijective. We shall prove:

THEOREM 1. Let A be a closed bounded generalized polydisc in an open
set X of C*. Then the natural homomorphism (1) is bijective for any
1=q=n-2.

ProoF. Set A=L;X -+ XL, and let K=K;X - -+ XK, be an
open generalized polydisc with4 CK C K CX.SetL' =L, X - - -
XLn, K'=K;X -+ XK, Go=(Ki\L)XK', Gi=KiX(K'\L,
G=G,\JG;. By a straightforward generalization of [3, Hilfsatz] one
gets H¢(G, ©) =0. We now introduce a covering U= { U,'} of X\4
where all the U; are domains with H?(U;, 0) =0 and precisely g+1

of them, say Uy, - + -, Us, coincide with G. By Leray’s theorem [2],
the canonical homomorphism
) HY(N(U), 0) — HY(X\4, 0)

(where N(U) is the nerve of U) is bijective.

We next introduce a covering U’'={U!} of X where U= - - -
= U,’q=K1 XK' and U! = U, for all other indices 7. Again, the canon-
ical map

(©) HY(N(U"), 0) = H(X, 0)

1 This work was partially supported by the Alfred P. Sloan Foundation and by the
NASA Grant NGR 14-007-021.
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is bijective. We shall now construct a map
4 H(N(U), ©) = HY(N(U"), 0).

Let fEHY(N(U), 0). We may view it as a g-cocycle. Let f;,...;, be the
section of f on U;N - - - \U,;,=G. The proof of Lemma 3 in [1]
can be extended to show that f;...;, can be continued analytically
to K1 XK’. The continued function f;...;, thus obtained is defined
on ;N - - - NU,. We now define f;...;, for any set of distinct in-
dices {jo, * + -, 7o} which does not coincide with the set {0y « =+, 1q}.
Since among the ji's there is at least one index, say 4, with 754 for
all 0 <%k =<gq, and, consequently, U/= U; C X\4, we have
UlN (E1XK')=U!N G. Hence UyN - - - N\U =U;N - - - N\,
and we can take fj...;;=fip-jor

We have thus defined a g-cochain f’ on N(U’). f’is cocycle. Indeed,
observing that U;M - - - MUy, coincides with U;N\ - - - NUj,,
if all the j; are distinct from each other, and that the analytic function
fh-+3,--iay, Testricted to either of these sets coincides with fj,...5 . jps
the equation §f =0 implies §f’ =0.

We next show that if f=258g then there is a (¢—1)-chain g’ with
og'=f". If (a) {jo, <o ,jq—1} C{io, s e e, iq} then we take g;...;,,
to be the analytic continuation of gj...;, to Uy - - - NUj,,,
whereas if (a) does mnot hold then YN Uj,
=U;N\ - -+ NUj,, and we take g...;,,=gj.-.j,o. With g’ thus

constructed, the relation dg’=f" over Uj"N\ - - - MU, in case (b)
{ Joy oy jq} =140, -+, iq} follows from the relation dg=f over
U - - - NUj, by analytic continuation, whereas in case (b) does

not hold it coincides with the relation g =f over U;"N - - - N\Uj.
We have thus shown that the map f—f’ defines a homomorphism
(4). This map is surjective since, given f’, its restriction f to N(U) is
mapped into f’ by the above map. It is also injective since if f/ =dg’
for some (¢—1)-cochain g’ over N(U’), then the restriction g of g’ to
N(U) clearly satisfies f=208g. Noting finally that the map f—f’ is the
inverse of the restriction map, and combining (2)-(4), (1) follows.

CoOROLLARY. If HY(X, 0) =0 then HY(X\A, 0) =0. In particular, if
X is Cousin 1 then X\A is Cousin 1.

THEOREM 2. Let A, B be two closed bounded subsets of an open set
X CC» and let P be a closed generalized polydisc with A C int PCP
C int B. If, for some 1=<q=n—2, the natural homomorphism

(5) H(X\4, 0) = H(X\B, 0)
1s injection, then there exists a homomorphismh: HI(X\A4, 0)—H«(X, 0)
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such that w\ =1identity, where w is the map (1) (and, consequently, & is
surjective) ; in particular, if H4(X, 0) =0 then HY(X\A, 0) =0.

Proor. Take coverings U?, U2, U3, U*of X, X\A4, X\P, X\B re-
spectively whose open sets are domains of holomorphy and such that
the sets of U* (¢=2, 3, 4) are among the sets of UL Given f;
€ H«(N(U?), 0) there corresponds to it (by restriction) a unique ele-
ment f; in H(N(U*), 0) and a unique element f; in H(N(U?), 0);
fuis therestriction of f;. By Theorem 1 there existsan ;& H#(N(U?Y), 0)
whose restriction to N(U?3) is f;. Hence the restriction of f; to N(U,)
is fa. Since f1 and f, have the same restriction on N(U*), the injectivity
of (5) implies that the restriction of f; to N(U?) is fo. Thus the map
fa—fiisaninverse of the restriction map H«(N(UY), 9)—HY(N(U?), 0).
The assertion of the theorem now follows with A\ being the image of
the homomorphism f—f; under the canonical map corresponding to
He(N(U?), 0)—»H«(X\4, 0), H(N(UY), 0)—H(X, 0).

GENERALIZATIONS. By successive applications of Theorem 1 we get:

(1) If 44, - - -, A, are closed bounded generalized polydiscs such
that 4;,NA,= if j#Fk, then the natural map

0 (x\ (0 4), o)
t==1
is bijective.

(2) Theorem 1 extends to the case where X is an open set on a
complex manifold provided 4 is contained in one coordinate patch
and its image in C" is a generalized polydisc. Theorem 2 and (1)
have similar extensions.

By slightly modifying the proof of Theorem 1 we obtain:

B) HX=XiXK,uX -+ XKp A=A1XKpuX « + - XK, where
X, is any open set of C? and K;isan open set in the z;-plane, then the
homomorphism (1) is bijective if 1=g¢=<p—2.

(4) If A in Theorem 1 is convex, then (see [1]) H(G, 0*) =0. By
modifying the proof of Theorem 1 we find that the natural homo-
morphism

He(X, 0*) — HY(X\4, 0*)

is bijective. The analogs of Theorem 2 and (1)-(3) are also valid.
We shall now give a different approach to proving results similar
to Theorem 1. Since this approach does not yield a result as general
as Theorem 1, we shall only sketch it. Let X=K;X - - XK,,
A=IL;X - -+ XL, be generalized polydiscs. We say that the con-
dition (A,) holds if for each j=1, : - -, m either (a) K, is the whole
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plane C and then L; is an arbitrary closed bounded subset of K;, or
(b) K;=C and then L; consists of a finite number of points. The L;
for j=m-41, - - -, n are arbitrary closed subsets of K;.

TaEOREM 3. If (An) holds for some 2<m =<n then H(X\A4, 0)=0
for 1 £ ¢ £ min(m — 1,n — 2). The relations H*1(X\A4, 0) # 0,
He(X\A, 0) =0 for ¢=n are valid under the assumption (Ao).

Proor. Setting A3=K1x R XK,'-;X(KJ'\LJ') XKinX «++ XK,
and noting that H4(A;, ©) =0 for g=1, it suffices to consider H¢((U), 0),
where U= {Al, ce e, A,.}. We consider only the case 1=<¢=<n-—2.
Denote by I;,...; (k) the Cauchy integral of & with the 7th contour
being K, if 1], for all p, and 9L, if 2=7, for some p. (Actually one
should replace 0K, 0L, by smooth 0K, ., dLm, which approximate
0Km, OL,.) Then we can represent each component f;,...;, of a g-
cochain f by

g+1 q

(6) Joria=22 20 Tgein(fiore i)
k=0 0;71< « <jp
LEMMA 1. Consider a domain D=K\L in the complex plane, where
K is the whole plane and L is any closed bounded set with C* boundary
OL. Let ¢(2) be any analytic function in D and let Y(2) be any continuous
function on L such that

f ¢() d + v ds=0in DN {z; | 3| <R}
-2 & — 3 or §— 2
for all R sufficiently large. Then, for all R sufficiently large,
f ¢() dt = v &) dc=0in DN {z; | 2| <R}.
t=k £ — 2 oL ¥ —2

A similar result holds in case K is a bounded set with C! boundary
and L consists of a finite number of points. Using these results, the
condition 8f=0 implies the following system of equations:

If i<+« <GEm<ipu< -+ - <ty for some 0=k =g+1, and
if 4;,< +++ <2;,=m for some 0<k=h, then

g—h+1 g+1 g+l
mn 2 2 Ie,---n,-l,‘m'--a,< 2 (—1)'feo---i.-~-eq) =0,
=0 A+L;M< . -<X, y=0
where in the third summationv#j;, - -+ ,»#=jrand v\, - - « , v\,
To find g satisfying dg=f, we try to represent g;,...;,_, analogously
to (6), and then the relation dg=f is a consequence of the following
system of equations:
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i< ¢ r <Has=m<p< - - - <4y for some 0£h—1=gq, and if
15, < + + + <4, <m for some 0=k=<h—1, then
a—ht1 g

q
Z Iii;""'a'ki’\l""')‘p( Z (—1)’g,-o...?,....-q)

(8) =0 IM<-<Dp »=0
g—h+1 q
- E E I"il""ifkﬂ')\l"'i)\p(fio“'f«) = 0,
=0 BM<- <Ay
where in the third summation of the first term »#7;, - - -, v#j; and
V;éxly ] V=xp-

Using (7) we can solve (8) as follows: If 4> 1, or if 4,=1, 7;,>1
then gig...ipoy =f1ip-+eiger- If lo=4;;=1and if 4,>2 or 41=2, 7;,>2 then
Gig-+-ig—1 =J2ig-+-ig—- We proceed in this manner and finally define, in
case '1:0='I:jl=1, ceey, 'ik_1='ijk=k, g,',,...,'q_l =fk+1.io"'iq-r

This method extends also to the situations described in (1), (3)
above.

Added in proof. The relation H*—2(X\4, 0) %0 holds if in (3) X;and
A, are both generalized polydiscs. Taking @, = X,\4» where X,,, 4
are generalized polydiscs with X,,™ X, 4,/ 4 one derives, for fixed
1<¢<n-2, examples of domains Q, with Q,_1DQn, such that
H(Qn, ©) =0 for 1 =7=<n-—2 but H¢(Q, 0) #0 where Q=int(lim Q,,).

By Dolbeault’s theorem, H4(Q, 0) =0 if and only if for any C*(Q)
form f of bidegree (0, ¢) with 3f=0 there is a C*(Q) form » with
du=f. By modifying the proof in [2, p. 29] we find: If for some
g>1,8,C Qu, @ = lim Q,, H(Q,, 0) = 0forr = ¢ — 1, g, then
H(Q, 0)=0. Also if H'(Q,, ©) =0 and if for any » holomorphic in
Q.. and €>0 there is a v holomorphic in @4, with |u-—v| <ein Qpy,
then H'(Q, ©)=0; this can be applied to Q,=X,\4, as in [1,
Theorem 3].
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