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Considerable work has been done in recent years to generalize a 
certain part of the theory of holomorphic functions on the unit disc, 
related to the Hardy classes Hp

t as well as to determine a proper 
setting for the resulting abstract Hp theory. The reader is referred 
to the excellent accounts in Hoffman [5] and Hoffman-Rossi [ó]; see 
also Lumer [7] and Srinivasan-Wang [9]. 

In this note we intend to describe how an approach to the above 
theory a t its most general level, based on what we call the Herglotz 
transformation,2 leads to : (i) advantages in deriving the theory; (ii) 
stronger and more explicit forms of known results; (iii) new results, 
which we believe shed light on the nature of the subject and yield 
applicable information. The Herglotz transformation corresponds in 
the classical case to the integral transformation defined by what is 
sometimes called the Herglotz kernel. In §1 we introduce the Her­
glotz transformation under most general conditions, and show that if 
A is any subalgebra of L°°(w) containing 1, m a positive measure 
multiplicative on A, then a certain form of logmodularity will hold 
even if m is not unique as a representing measure on A. From this 
one can, in particular, settle a question implicitly left open by Hoff­
man-Rossi [6]: whether to simply assume density of Re A in L%(m) 
for all p finite will yield the usual Hp theory and imply the uniqueness 
of m in the sense of [6] (it is shown in [6] that density of Re A in 
L\t or L% will not suffice). The answer is affirmative. In §2 we extend 
the transformation under uniqueness assumption on m, and use this 
in §3 to derive the full Hp theory. Once the properties of the trans­
formation are known, many results will follow very directly without 
need of treating separately Hp spaces for different values of p. The 
crucial fact that Re A is dense in 1% for all p finite (under uniqueness 
assumption on m) is proved here without appeal to some nontrivial 
tool foreign to Hp theory (such as Lemma 6.6, [5]). As an example of 
"more precise forms of results," we prove a Szegö theorem giving not 

1 This research was supported in part by the National Science Foundation through 
grant G24502. 

1 Related ideas were used recently, in connection with special questions, by Devi-
natz [3], [2], dealing with Dirichlet algebras, and by Lumer [8], in a setting without 
uniform approximation assumptions. 
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only the minimum distance, but explicitly the projection, as well. 
One derives a computable expression for the prediction function in the 
linear prediction problem of [4]. Finally we deal with the following 
important question: to what extent is it true that if fÇzH1, and F(z) 
is holomorphic on the "spectrum" (to be defined) of ƒ, then F(J) is 
in Hp provided it is in Lp. We define a spectrum <r(f), for / G i ï 1 , and 
show that if/, g £ H \ R(z) is rational with poles outside <r(f), then 
gR(f) is in Hp provided it is in Lp, p ̂  1. ƒ outer implies 0 ( J X / ) , and 
we have some particular cases which appear in the literature, [5], 
[2], [3], [8]. 

1. Herglotz transformation and logmodularity. Let A denote a 
closed subalgebra of L°°(m) containing 1, where m is a multiplicative 
measure on A [S]. For SCZLc0(m)1 SR denotes the set of real-parts of 
elements in S. 

DEFINITION 1. For p>0, Hp = Hp(m) is the closure of A in Lp(m)\ 
H™ is H2rM.™. £,R is defined as the Z/*-closure of AB in Z,00.3 

m is multiplicative on A, so that ƒ real-valued in A and ff dm = 0, 
imply ƒ = 0 a.e. Hence there is no ambiguity in the following 

DEFINITION 2. For u(EzAR, TQu denotes the element of A such that 
a.e. u = Re(T0u), and flm(Tou) dtn = 0. T0 shall be called the ele­
mentary Herglotz transformation. 

To is linear on AR. Using a method introduced by Bochner [ l ] , [2], 
one obtains 

PROPOSITION 3. Given p^2f there is a constant Cp such that VWG-^B» 

(1) \\Tou\\p Û CP\\U\\P-

LEMMA 4. The constants Cp in (1) can be chosen so that 

(2) Cp = 0(p) as ƒ>-><*>. 

Because of (1), T0 has an extension T to <£j£, defined independently 
of p. The range of T is in H(a = dp<o0 H

p, and we have Re(Tu) =uy 

u\\p, for UÇZJUR and each p finite ^ 2 . 

THEOREM S. If UÇE£R*, then exp(Tu) is an invertible element of iî00, 
and 

(3) u = log | exp(Tu) | . 

SKETCH OF PROOF. H00 and Ha are algebras, and for U(E:£R, 
1 In accordance with a terminology introduced by Arens, L03 denotes the topologi­

cal algebra obtained by providing the intersection of all 2> for p finite (which is an 
algebra under point-wise multiplication), with the locally convex topology defined by 
the family of all Z> norms for p finite. 
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(4) ||r«||,gc,||«||1,^^|«||. 
by virtue of Lemma 4, for p finite ^ 2 . In the power series in t (real) 

(5) £ (\\(TuY\ynty» 

we have | | ( ^ ) n | | 2 = ||r^||2», and (n\)lln~n/e asymptotically. I t will 
follow from (4) that (5) has a nonzero radius of convergence. I t can 
then be derived that ex-p(t(Tu))Ç:H2 for all \t\ g some positive r. 
Since H°° is an algebra we see a t once that exp(Tu)^H°°. 

COROLLARY 6. If AR is dense in LR for all p finite, then H°° is (in 
the sense ofJHoffman [5]) a logmodular Banach algebra on the maximal 
ideal space of L00. 

Thus, the //"-density of A R in LR implies the uniqueness condition 
discussed by Hoffman-Rossi in [6], and all of the Hp results. 

2. Herglotz transformation and uniqueness. Now let C be a linear 
subspace of Lw(m) containing A, and denote by [m] the functional 
defined on AR as [w](w) = fu dm, \fu^AR. 

THEOREM 7. Suppose [m] has a unique positive extension to CR. 
Then T0 has a linear extension T\ to CR, such that MUCZCR, T\U 
Gn p<i Hp, u = Re(Tiu), and for each p<l, there is a constant Cp such 
that | |riw||p^Cp||w||i provided we have also u^O. Finally V ^ S C A , 
exp(Tiu) is in H°°. 

If in addition CR is a sublattice of LR (with the usual "sup" opera­
tion), then f or each p<l, there exists Kp such that f or every U^CR, 

(6) | | r i « | | , ^ j s : , | | « | | i . 

3. The Hp theory. In order to develop the usual Hp theory we must 
now assume that the C introduced above is "large enough." In the 
usual situations C is either C(X), the complex continuous functions 
on a compact Hausdorff space X, or just L°°(ra). From here on we 
shall thus assume: 

(a) [m] has a unique positive extension to an L1-dense linear sub-
lattice CB of LR.4 

We indicate briefly how the usual Hp theory is derived in this ap­
proach. This applies a t once to the case C= C(X), m a unique repre­
senting measure, and also readily to the case in which we assume 
weak* (or only Lw) density of Re A in LR . To show that the theory 

4 It is well known that the Ll density of CR alone, is not sufficient to insure the 
validity of the usual H* results. 
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developed in [ô] by Hoffman and Rossi reduces to the above requires 
the use of essentially the first three lemmas in their paper. Under 
assumption (a) it follows that To has a linear extension T to LR hav­
ing all the properties stated in Theorem 7 for T\. T will be a basic 
tool for the Hp theory. As usual we set Am = {fEA: ff dm = 0}. We 
use temporarily the notation Hp = {fELp: ffgdm = 0\tgEAm}. 

THEOREM 8. IfuELR, and gEBp, then g exp(Tu) EBq provided it is 
in Lq, p and q^l.Ifgisin Hp, then, provided it is in Lq, g exp(Tu) EHq 

and f g exp(Tu)dm = (fg dm) exp(fu dm). If g is in addition outer, 
then g exp(Zw) is outer. 

It can now be shown from Theorem 8 and usual arguments, but be­
fore any machinery is developed, that Ë2 = H2 and H1 = H1. From 
this we come to the crucial fact that Re A is dense in LR, p finite, as 
follows 

THEOREM 9. If f (EH1 and is real-valued then f is constant a.e. 

PROOF. Suppose un+ivn=fnEA, and ||/—jf«||i—>0. Since ƒ is real, 
|K||i—>0, and ||/—tfn||i-+0. We may assume ffdm = 0, and hence 
may also assume fun dm = 0. Hence Tvn = ifn tends to 0 in Lp for p < 1, 
by Theorem 7, and from ||/~Wn||i—>0, follows then t h a t / = 0 a.e. 

COROLLARY 10. AR is weak* dense in LR, hence norm-dense in LRfor 
p<oo. 

PROOF. If fELR and ffgdm = 0, VgEA, then fEHl
m = Hl

m, and 
being real, is 0 by Theorem 9. 

From this, and Proposition 3 completed by duality for \<p<2, 

COROLLARY 11. If' uEL% p finite > 1 , then TuEHp. 

COROLLARY 12. If f EH1, andfELp, Kp^ ooy then f EHp. 

PROOF. RefEL*, hence g = r ( R e / ) G H 1 . Thus i(f-g) is real-
valued and in H1, hence constant by Theorem 9. It follows that 
fEHp. 

Many results follow now quite rapidly, for instance, 

THEOREM 13. If f EH1, log | / | EL1, the outer part off is but f or a 
constant factor of modulus one, given by F=exp(T(log \f\)), andf= FJ, 
where J is inner. 

PROOF. From Theorem 8, Fis outer ; and since / = ƒ exp( — T(log | ƒ | )) 
EL90, we have JEH™ from Theorem 8. Also | j \ = 1, a.e., so that J 
is inner. 
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THEOREM 14. Let /Gi?1 , log | / | GL1, p and qèzl be such that 
l/p + l/q = l. Thenf=hg, where h&Hp and gEH*. 

PROOF. By Theorem 13, we may assume ƒ outer and ffdm real, 
> 0. Then ƒ = exp(r(log|/ |)). Set h = exp(r(log|ƒ| /p)), 
g=exp(r(log| / | / j )) . Then hELp, g&L«, and by Theorem 8 we 
have h(EHp

t gÇHHq; and surely ƒ=hg. 

4. The Szegö theorem and linear prediction. The following is a 
stronger version of the usual Szegö theorem (see also [9]). 

THEOREM IS. Let h^O be in L1, p be finite and è 1. Then the mini­
mum distance of the constant function 1 to the closure S of'Amin Lp(hdm), 
is achieved at 

(7) 1 - exp (l/p ( f log h dm- T(log h) 

if log AG^1, and at 1 itself otherwise. The minimum distance is given 
by (exp(/ log h dm))llp. 

PROOF. Set ƒ for the exponential which appears in (7), where we 
assume that log hÇEL1. Clearly ƒ is in Lp(hdm). If 1—ƒ is not in 5, 
there is a g in Lq(hdm), l/p + l/q = l, such that f(l—f)gh dm?*0, 
while g is "orthogonal" to Am. The latter implies, since gh&L1, 
that ghÇzH1. Hence we can apply Theorem 8, after checking that 
ghf&L*(m), to see that ghfQH*. Similarly, f-1ELp(m) yields/-1 GHp. 
Also Theorem 8 shows that Jf~l dm = 1. This implies fgh dm 
—ff"1 dmfghf dm— fghf dm, a contradiction. This proves that (1—ƒ) 
G5 , so that the minimum distance is ^||/||p = (exp(/ log h dm))11 p. 
The reverse inequality, and the case log ht^L1, are not difBcult to 
handle from here on. 

We can apply this to the solution of the linear prediction problem, 
in the setting of Helson-Lowdenslager [4], considering for instance, 
as they do, a doubly stationary sequence. To the latter corresponds 
a correlation function which is positive definite as a function on the 
discrete group Z2, and thus the Fourier transform of a positive meas­
ure ii on the 2-torus. We assume that the subset of Z2 for which the 
prediction problem is to be solved is a half-plane in the sense of 
Helson-Lowdenslager [4], Via a certain isometric map (see [4]) the 
solution of the prediction problem corresponds to a function $ in 
L2(jx). If m denotes the normalized Haar measure on the 2-torus, and 
h the Radon-Nikodym derivative of /x with respect to w, then the 
prediction error, as given in [4] is (exp(/ log h dm))112. Now Theorem 
15 enables us to write down $ as 
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(8) $ = 1 - exp ( 1/2 ( f log k dm- T(log h) 

from which approximations to $ can be computed. 

5. Holomorphic functions of Hp elements. We need a notion of 
spectrum. 

DEFINITION 16. If f EH1, the inner spectrum (we shall usually say 
spectrum) a (J) of ƒ, is defined by 

(9) a(f) = {\ complex: X — / i s not outer}. 

THEOREM 17. If f EH1, gEH1, and R(z) is a rational f unction of the 
complex variable z with poles outside a(J), then gR(J)EHp, p^l, pro­
vided it is in Lp. 

COROLLARY 18. If f EH1 is outer, gEH1, and gf~lELp, lèpS °°, 
then gf~lEHp. In particular, if \g\è \f\, then gf~lEH«>; if \f\~lELx, 
it is in H1. 

THEOREM 19. If f EH1, then <r(f) is contained in the convex hull 
of the set of values of f. 
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