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1. Introduction. The purpose of this note is to give an example of 
an annihilator algebra which is not dual ; no other such example has 
been published. Here we construct a semi-simple, normed, anni­
hilator algebra which has a closed two-sided ideal which is not an 
annihilator algebra. Every dual algebra is an annihilator algebra by 
definition, and every closed ideal in a semi-simple dual algebra is a 
dual algebra by a theorem of Kaplansky ([2, Theorem 2, p. 690] or 
(iii) in the text of this note). Noting these facts, it follows that the 
example we construct is not a dual algebra. 

Whether every closed two-sided ideal in an annihilator algebra was 
necessarily an annihilator algebra had been a question of long stand­
ing. 

The example given here is a normed algebra. The algebra is a Q-
algebra (see [4, p. 373]), but not, however, a Banach algebra in the 
given norm. Therefore these questions remain open for the special 
case of a Banach algebra. 

2. The example. Let lv be the algebra of ^-summable complex 
sequences with multiplication performed coordinate-wise. Set Ai = ll, 
A2 = l2 and A = Ai($A2 (the direct sum of Ai and A2), For XÇELA, we 
shall write x = (xi, x2), where XIG^4J, x2ÇzA2. X\(ï) and x2(i) will denote 
the ith. coordinate of xi and x2 in Z1 and Z2, respectively. 

We shall define a norm on A such that A is an annihilator algebra, 
but not dual, in the topology of this norm. 

First we define, for xÇzA, 

( oo oo \ 1/2 

ZI*i(;) |2 + ZI*2(i)|2) . 
Note that p(x) is a norm on A. 

Secondly, since Z1 is properly contained in Z2, we may choose a non­
zero linear functional F on Z2 such that F(x)=0 for xÇZ1. Further­
more, since (Z2)2 = ZX, F is zero on (Z2)2. Now we define, for x£^4, 
x = (xi, x2), 

1 This research first appeared in the author's doctoral dissertation [l ], and was 
supported in part by NSF grant GP-1645. 
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q(x) = Z *i(0 + FM 
* - i 

We note the following properties of q{x) : 

(1) q(x + y) â q(x) + q(y), 

q(xy) = Z) ^i©^i(*) + ^(#2^2) 
t - i 

(2) 
= Z *i(*):yi(*) 

( «o \ l / 2 / 00 \ 1/2 

El*i«l2) ( E l ^ ) l 2 ) ^ p(x)p(y). 

Finally, we define \\x\\ = max (£(#), q(x)). 

LEMMA 1. || -|| is a norm on A. 

PROOF. We verify only that ||#:y|l ^ IHI IHI- | [ ^ | | =max(p(xy), 
q(xy)). But p(xy) èp(x)p(y) and q(xy) ^p(x)p(y) by (2) above, and, 
therefore, \\xy\\ ûp(x)p(y) û\\x\\ \\y\\. 

Let ek and fk be the elements of A defined by 

(ek)i(i) = dik, (ek)2(i) = 0, i è 1, 

(fkh(i) = 0, (fk)2(i) = ôik, i ^ 1. 

The set of all ek and fk is the set of minimal idempotents of A. 

LEMMA 2. A has dense socle w.r.t. {with respect to) || -||. 

PROOF. Assume that xÇEA and F(x2)=\. Define ynt an element of 
the socle of A, by 

( n n X n \ 

Z) *i(*>< + Z) -^* I ] **u)// )• 
t= i i - i ^ j - i / 

Then £ ( * - * ) » = E i - » + i I *i(*) 12+1 X| V » + E ; - » + i I **(ƒ) 12- and, 
therefore, p(x—yn)-*0 as n—»<*>. 

ff(* - y») 
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and so, also, g.(x—yn)—*0 as n—»<*>. 
Hence ||#—yn||—*0 as w—>oo, and it follows that the socle of A is 

dense in A. 

LEMMA 3. A2 is a closed ideal w.r.t. || -||, and A2 does not have dense 
socle w.r.t. \\ -\\. 

PROOF. A2 is clearly an annihilator ideal of A, and, therefore, A2 is 
closed in any norm topology on A. 

Now choose x2(E:A2 such that F(x2) = 1. Note that, if y2 is an ele­
ment of the socle of A2, F(y2)=0. Therefore, ||(0, x2) — (0, 3/2)|| 
^q«0,x2-y2)) = \F(x2)\=l. 

Since y2 was an arbitrary element of the socle of A2, A2 does not 
have dense socle. 

At this point we list results from the theory of annihilator and dual 
algebras which we use in what follows: 

If B is a semi-simple commutative normed algebra in which every 
maximal modular ideal is closed, then 

(i) If B has dense socle, B is an annihilator algebra [3, Theorem 
(2.8.29), p. 106]. 

(ii) If B is an annihilator algebra, B has dense socle [3, Corollary 
(2.8.16), p. 100]. 

(iii) If B is dual, every closed ideal of B is dual [3, Theorem (2.8.14), 
p. 100]. 

The theorems referred to in (i)-(iii) are stated for the case where 
B is a Banach algebra, but the proofs hold in the more general case 
where every maximal modular ideal of B is closed. 

LEMMA 4. Every maximal modular ideal of A is closed w.r.t. | |-| |. 

PROOF. A is a Banach algebra in the norm \x\ = 2 £ i | # i ( ^ ) | 
+ ŒZi\*2(i)\2)112. By [3, Theorem (2.8.29), p. 106], A is dual 
w.r.t. | • | . In particular, every maximal modular ideal of A is an 
annihilator ideal, and hence closed w.r.t. any norm topology. 

THEOREM. (1) A is an annihilator algebra w.r.t. || -||. 
(2) ^42 is not an annihilator algebra w.r.t. || -||. 
(3) A is not dual w.r.t. || -||. 

PROOF. By Lemma 4, (i)-(iii) apply to A. By (i) and Lemma 2, A 
is an annihilator algebra w.r.t. || *\\. 

I t is easily seen that every maximal modular ideal of A 2 is closed 
w.r.t. | |- | | . Therefore (ii) applies, and (ii) and Lemma 3 imply that 
A2 is not an annihilator algebra w.r.t. ]| -||. 
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Finally if A were dual w.r.t. || «||, Ai would be dual by (iii). This 
contradicts part (2). 
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