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Let £ be a closed sublattice of the (^LL)-space L [l, pp. 107-110]. 
The purpose of this note is to prove that there is a projection of L 
onto E having norm one. In particular then £ is a direct factor of L. 
To show this we prove auxiliary theorems that the conjugate space 
E' of E may be "lifted" to L' (see Theorem 2 below) and that there 
is a projection of £ " = (£ ' ) ' onto q{E)y the natural embedding of E 
in E", whose norm is one. 

The space V is isometric and lattice isomorphic to a space C(H) 
of functions continuous on a compact, extremally disconnected Haus-
dorff space H [4, Theorems 6.3, 6.9, Corollary 6.2]. Then L" is iso­
metric and lattice isomorphic to the space R(H) of regular measures 
on H [3, p. 265]. If * ' £ £ / , x " G L " correspond to fGC(H), vGR(H), 
then X"(X')=JH fdv = (dei. v(f)). If v^R(H) and v(N)=0 for each 
nowhere dense set N then v is a normal measure. The support Av 

[2, pp. 2, 8, Proposition 3] of such a measure is both open and 
closed. Let N(H) denote the subspace of normal measures. 

THEOREM 1. The representation of L" as R(H) maps q(L) onto the 
space N(H) of normal measures on H. Moreover \}{Av\vÇzN(H)} is 
dense in H (so that H is hyperstonean [2]). 

PROOF. Let v ^ 0 correspond to qx for x in L. Let N be a closed 
nowhere dense set. We prove first that v(N) =0 . Let F be the subset 
of funct ions/ in C(H) for which ||/|| = 1, fèO, f(h) = 1 if h£N. Then 
F is directed by ^ . This directed set then converges at each such v 
t o i n f { K / ) | / G ^ } . Thus F converges on the representation of h in 
R(H). The directed set of x' in L' corresponding to F then converges 
pointwise on L to an element y' in L'. If y' corresponds to g in C(H) 
we have v(g) =inf \v(f)\fÇiF) and clearly g = i n f { / E ^ } . Since N is 
nowhere dense, g = 0. Thus inf {?(ƒ) \fGF} = 0 so that v(N)=0. Thus 
v is a normal measure. 

To prove the second part let A be open and closed in H. For some 
p > 0 corresponding to qx, x G £ , we have V(XA)>0, where XA is the 
characteristic function of A. Thus A meets the support of v. Hence 
H is hyperstonean. The theorem follows immediately from a result 
of Dixmier [2, p. 21, the corollary and its proof]. 

1 This research was partially supported by NSF Grant GP1913. 
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THEOREM 2. Let i be the inclusion mapping E—*L and let i' \ Z/—»E' 
denote the conjugate mapping. There is a positive isometry T: E'-*L' 
such that i' T is the identity on E'. Thus Tx' is an extension of x' to L 
for each x' in Ef. 

PROOF. The space E is itself an {AL) -space and so it is isometric 
and lattice isomorphic to a space N(K), with conjugate C(K), and 
second conjugate R(K), as above. We shall then, suppressing the 
representation mappings and their inverses, write N(K)—^iN(H), 
C(JEO->*'C(i?:), and seek a positive isometry T: C(K)-*C(H) with 
the property that i'T is the identity on C(K). 

Let XA denote the characteristic function of the set A. Let G be the 
collection of open and closed subsets of H such that i'xA — 0 and let 
G = C1(U {A G Ofc} )• Then G is open and closed and we now show that 
i'xo = 0- I t is enough to show v(G)=0 if ^ ^ 0 is in i(N(K)) since 
i(N(K)) is a sublattice of N(H). Since v is normal, KG) = K U {4 G Ct}) 
as G—Uj^lGCt} is nowhere dense. If CCU{^4G&} is closed, a 
finite number of -4's in 6, cover C, so that v(C) = 0. Since v is regular, 
KU{i lGCt} )=0 . 

Now let e be an extreme point of the unit ball of C(K) (so that e 
takes only the values 1 and —1). As a functional on N{K) e has an 
extension to C(H) which is an extreme point of the unit ball of C(H). 
This follows since the set of norm one extensions of e is a compact 
convex set in the ^'-topology of C(H). This set then has an extreme 
point and such a point is also an extreme point of the unit ball of 
C(H). Let ƒ agree with such an extension off G and have value 0 on G. 
Then ƒ is an extension of e to C(H) and takes only the values 1 and 
— 1 off G. Then ƒ has the following properties, (a) i'f+ = e+ (so i'f~ = er), 
(b) ƒ is unique. To show (a) note that Xx>i'f+^Q, XK^i'f"^® 
and i'f=i'(f+—f~)=e {i' is a positive norm one mapping). Thus 
if e(k) = l then *'ƒ+(*) = 1 and if e(*) = - l then *'ƒ-(*) = 1. 
Hence (a). To show (b) let g be another such/ . By (a) i 'g+ = e+. Let 
A' = {h | g(h) = 1, ƒ(h) = — 1}. Then A' is open and closed and 
g+^XA'^0. Thus e+^ifXA'^0. However f-^f~ — XA'7^0 so that 
er^i'xAt^0. Thus i'XA,(k)=0 if e+(k)=0 or <?-(£) = 0 , or ÏXA>=0. 

It follows that A' dG so that A' =0. Interchanging ƒ and g in this 
argument yields ƒ = g . 

From these calculations one has that, given an open and closed set 
AC.K, there is a unique open and closed set A'CM—G such that 
i'XA'—XA (let e = XA— XK-A and select X A ' = / + as above). If A and B 
are open and closed and if AC\B — 0, it is easy to see that (A\JB)' 
= A'\JB' and that A'C\B' = 0. If AC\B^0 write (A\JB)' 
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= ((A - B)V (AC\B)V (B - A))' = (A - B)'KJ (Ar\B)'\J (B - A)' 
= [(A-By\J(AnBy]yj[(Ar\By\J(B-A)']=A'\JB'. Noting that 
K' = H-G and that (K-AY = H-(A'UG) one gets, by considering 
complements, that (AC\B)' = A'r\B' for all open and closed sets 
A, BC.K. Thus "'" preserves the ring operations of the ring of open 
and closed subsets of K. 

Now let 5 be the submanifold of functions in C(K) assuming 
only finitely many values. Define T: S—>C(H) by T(^i a»xi<) 
= ^ 1 ttiXAi' for s = 5^1 diXAidizS. Since "'" preserves the ring opera­
tions it easily follows that T is linear, positive and that | | ^ | | =|I5II 
for all s G S. Now S is dense in C(K) as follows. If €>0 the set 
{k\-\\f\\+ne<f(k)<--\\f\\+(n + l)e},n = 0, 1,2, • • -, has open and 
closed closure An. The set Bn of k such that f(k) = — ||f|| +ne and 
k$zAn-i\JAn is also open and closed. At most a finite number of Am 

Bn are nonempty so || £ f ( - | | / | | + » « ) X A . + E f (-11/11 +«<)XB„ ~ / | | 
^ e if M is large. Thus T has an extension to all of C(K) (also 
denoted by T) which is positive and an isometry. 

Since (i'TxA)(v) = TXA{W) =XA>(ÎV) =i'xA'(v) = XA(V) for all v in 
N(K) and all open and closed sets AC.K one has that i'T is the 
identity on C(K). Q.E.D. 

Let q be the natural embedding of E in E" or of L in L". Thus 
WU) = / M for all ƒ in E' , *> in E (or ƒ in L', v in L). 

THEOREM 3. There is a norm one projection from E" onto q(E). 

Suppose for the moment this theorem has been proved. Let T be 
the isometry E'-^U promised in Theorem 2. The inclusion mapping 
i is suppressed in the following argument. Then T'\ L"—*E" and for 
x in E one has that Tfqx = qx since T'qx{x') =qx(Txf) = Tx'(x) =x'{x) 
= qx(x') for every *' in E'. Thus T'q(L)Dq(E) in E" . By Theorem 3 
there is a projection P of E " onto q(E) such that | |P| | = 1 . Then P 
restricted to T'q{L) is a projection of T'q(L) onto #(E). Finally 
Q = q~lPT'q is a projection of L onto E having norm one since clearly 
| |0 | | = 1» Q- L-+E, and Q is the identity on E. Thus one has 

THEOREM 4. If E is a closed sublattice of the (AL)-space L there is a 
projection Q of L onto E such that \\Q\\ — 1. 

PROOF OF THEOREM 3. Identify En with the space R(K) so that 
q(E) is identified with N(K). I t is sufficient to show there is a norm 
one projection of R(K) onto N(K). Let 91 be the set of closed nowhere 
dense subsets of K. Let v^O be in R(K). Define v\ on an open and 
closed set A by vi(A) =sup {v(N)\NCA, 2VG91}. Then vi is finitely 
additive on the ring of open and closed sets. If ^J[ a»Xt<£S, then 
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^1(^1 aiXA{) = 22? a>iv(Ai) defines a continuous linear functional on 
5 whose extension to C(K) yields an element v2^v of R(K). We will 
show that v(N) = v2(N) for all iV£9L Choose an open set B^)N such 
thatv2(B-N)<e. Choose/ in C(H) such that ||/|| =l,/(Jfe) = 1 if k<EK 
-B and/ ( fe)=0i f k£N. A=Cl([k\f(k)<%}) is an open and closed 
set for which v2(A-N)<e and NCA. Then v2(N) ^v(N) Sv2(A) 
^v2(N) + e so that v2(N) = v(N). Letvz = v — v2. Clearly 0 ^ v z ^ v and 
vz£N(K). If we define P(v)=vz for v^O then P(av) =aP(v) if a ^ O 
and P(v+fx) = P ( Ï > ) + P ( M ) > ^ , /X^O. NOW any v can be written 
v = fx—\ for some X, M = 0> and we define P(v) = P(ju) — P(X). If 
v = yL\—Xi = /x2—X2 in this way then MI+X 2 = M2+XI SO P ( J U I ) + P ( X 2 ) 

= P fa )+P(Xi ) or P(/xi)-P(Xi)=P(iU2)-P(X2) and thus P is well 
defined. Moreover P is clearly linear and | |P| | = 1 . Q.E.D. 
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