MULTIPLIERS OF FOURIER TRANSFORM IN A HALF-SPACE¹

BY E. SHAMIR

Communicated by F. Browder, September 24, 1964

1. Let (x, y) denote points in \mathbb{R}^n where $x = (x_1, \dots, x_{n-1}), y = x_n$. Points of the dual space are denoted by (ξ, η) . Let Y_+ be the characteristic function of the half space $\mathbb{R}^n_+ = \{(x, y) | y \ge 0\}$. Let $M(\xi, \eta)$ be an $m \times m$ matrix-valued function whose entries are homogeneous functions:

$$M_{ij}(\lambda\xi,\,\lambda\eta) = M_{ij}(\xi,\,\eta), \qquad \lambda > 0,\, 1 \leq i,j \leq m.$$

Assume further that $M(\xi, \eta)$ is continuous and nonsingular for $(\xi, \eta) \neq 0$. Consider the bounded operator M in the space $(L^2(\mathbb{R}^n_+))^m$ (with the natural norm denoted by $\| \|$):

(1)
$$Mu = Y_{+}\mathfrak{F}^{-1}[M(\xi,\eta)(\mathfrak{F} u)(\xi,\eta)], \quad u \in (L^{2}(\mathbb{R}^{n}_{+}))^{m},$$

where $\mathfrak{F}(\mathfrak{F}^{-1})$ denotes the direct (inverse) Fourier transform with respect to all variables. $\mathfrak{F}_{y}(\mathfrak{F}_{x})$ will denote the transform with respect to y or x alone. The one-dimensional operator M_{ξ} is similarly defined in $(L^{2}(\mathbb{R}^{1}_{+}))^{m}$ with the multiplier $M(\xi, \eta), \xi$ fixed:

(2)
$$M_{\xi v} = Y_{+} \mathfrak{F}_{v}^{-1} [M(\xi, \eta)(\mathfrak{F}_{v}v)(\eta)].$$

Our main results in this note are the following lemma and theorem.

LEMMA. The estimate

$$(3) ||u|| \leq C ||Mu||, u \in (L^2(\mathbb{R}^n_+))^m$$

holds if and only if for all $|\xi| = 1$ (uniformly)

(4)
$$||v|| \leq C ||M_{\xi}v||, \quad v \in (L^2(R^1_+))^m.$$

For the scalar case (m=1), we have

THEOREM. Let $M(\xi, \eta)$ be a homogeneous function continuous and nonvanishing for $(\xi, \eta) \neq 0$. Let

(5)
$$-\frac{1}{2\pi}\int_{-\infty}^{\infty}d_{\eta} \arg M(\xi,\eta) = k+\theta, \quad k \text{ integer, } -1/2 < \theta \leq 1/2.$$

¹ The work reported here was supported by the Air Force Office of Scientific Research under Grant No. AFOSR 553-64.

If $\theta \neq 1/2$, then M has a closed range and is injective if $k \ge 0$, surjective if $k \le 0$.

REMARKS. (1) The a priori L^2 -estimates for mixed elliptic problems can be reduced to the validity of (3) [2], [3].

(2) For n=1, $M=M(\eta)$ is determined by M(1) and M(-1). The operator M is then a singular integral operator (with Cauchy kernel) on a half-line. For this case it was shown ([4], cf. also [1], [2], [5]) that M is invertible if and only if the matrix $M(1)^{-1}M(-1)$ does not have real negative eigenvalues.

2. PROOF OF THE LEMMA. Assume first that (4) holds, and apply it to

$$M\left(\frac{\xi}{|\xi|}, \eta\right)$$
 and $v(y) = (\mathfrak{F}_{x}u)\left(\xi, \frac{y}{|\xi|}\right)$.

We get

$$\begin{split} \int_{0}^{\infty} \left| \left(\mathfrak{F}_{x}u\right) \left(\xi, \frac{y}{|\xi|}\right) \right|^{2} dy \\ & \leq C^{2} \int_{0}^{\infty} \left|\mathfrak{F}_{y}^{-1}M\left(\frac{\xi}{|\xi|}, \eta\right)\mathfrak{F}_{y}\left[\mathfrak{F}_{x}u\left(\xi, \frac{y}{|\xi|}\right)\right] \right|^{2} dy \\ & = C^{2} \int_{0}^{\infty} \left|\mathfrak{F}_{y}^{-1}\left[M(\xi, |\xi| \eta) |\xi| (\mathfrak{F}u)(\xi, |\xi| \eta)\right] |^{2} dy \\ & = C^{2} \int_{0}^{\infty} \left| \left(\mathfrak{F}_{y}^{-1}M\mathfrak{F}u\right)\left(\xi, \frac{y}{|\xi|}\right) \right|^{2} dy. \end{split}$$

After changing variables on both sides (put $\bar{y} = y/|\xi|$), cancelling $|\xi|$ and integrating with respect to ξ , we have

$$\int_{\mathbb{R}^{n-1}}\int_0^\infty |(\mathfrak{F}_x\mathfrak{u})(\xi,y)|^2\,dyd\xi \leq C^2\int_{\mathbb{R}^{n-1}}\int_0^\infty |(\mathfrak{F}_y^{-1}M\mathfrak{F}\mathfrak{u})(\xi,y)|^2\,dyd\xi.$$

Using Parseval's identity (for \mathfrak{F}_x^{-1}) we obtain (3).

Assume now that (4) does not hold for some ξ . Then for any $\epsilon > 0$ there is a $v_{\epsilon}(y) \in (L^2(\mathbb{R}^1_+))^m$ such that $||v_{\epsilon}(y)|| = 1$ and $||M_{\xi}v_{\epsilon}(y)|| \leq \epsilon/2$. It is easily seen that $||M_{\xi}v_{\epsilon}|| \leq \epsilon$ if $|\xi_R - \xi_R| < \delta$ and $\delta = \delta(\epsilon)$ is sufficiently small. Let now $w(\xi)$ be the characteristic function of the unit cube and

$$u_{\epsilon}(x, y) = v_{\epsilon}(y)(2\delta)^{-(n-1)/2} \mathfrak{F}_{x}^{-1} w\left(\frac{\xi - \overline{\xi}}{\delta}\right).$$

Then $||u_{\epsilon}|| = 1$ and $||Mu_{\epsilon}|| \leq \epsilon$, contradicting (3).

PROOF OF THE THEOREM. Solving $M_{\xi}v = w$ is readily seen to be equivalent (via Fourier transform) to solving the Riemann-Hilbert problem

(6)
$$\Phi^{-}(\eta) = M(\xi, \eta)\Phi^{+}(\eta) + \Psi(\eta)$$

where Φ^{\pm} are sought in $(H_{\pm}^{2}(\mathbb{R}^{1}))^{m}$, the space of transforms of L^{2} -vector functions supported in \mathbb{R}_{\pm}^{1} , and $\Psi(\eta)$ is a given L^{2} -function. In the scalar case (m=1) this was done by Widom [5, Theorem 3.2]. It follows from Widom's results that if in $(5) \ \theta \neq 1/2$ and $k \ge 0$ then M_{ξ} is injective and has a closed range for every $\xi \neq 0$, so that (4) is satisfied. It is clear that (4) is satisfied uniformly on the compact set $|\xi| = 1$, and by the Lemma we obtain that M is injective and has a closed range. If $\theta \neq 1/2$ and $k \le 0$ in (5), a consideration of M^{*} , the adjoint of M, which corresponds to the multiplier $\overline{M}(\xi, \eta)$, shows that M is surjective.

REMARK. It is easily seen that the expression (5) does not depend on ξ . Indeed, the homogeneity of M implies that $\lim_{\eta \to \pm \infty} M(\xi, \eta) = M(0, \pm 1)$, for any $\xi \neq 0$. This means that θ in (5) is the same for all ξ , and by continuity, the same is true for the integer k.

References

1. W. Koppelman and J. V. Pincus, Spectral representations for finite Hilbert transformations, Math. Z. 71 (1959), 399-407.

2. J. Peetre, Mixed problems for higher order elliptic equations in two dimensions, Ann. Scuola Norm. Sup. Pisa (3) 15 (1961), 337-353.

3. E. Shamir, Mixed boundary value problems for elliptic equations in the plane, the L_p theory, Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 117-139.

4. ——, Reduced Hilbert transforms and singular integral equations, J. Analyse Math. 12 (1964), 277–305.

5. H. Widom, Singular integral equations in L_p , Trans. Amer. Math. Soc. 97 (1960), 131–159.

UNIVERSITY OF CALIFORNIA, BERKELEY