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We follow the notation and terminology of [l ]. A semigroup T with 
zero is said to be O-rectangular if it has the property: if all the prod­
ucts at the vertices of a closed polygonal line (with a finite number of 
vertices) of the multiplication table are all but one equal to a nonzero 
element m and the remaining product is not zero, then it is also equal 
to m. A rectangular 0-band is a Rees matrix semigroup with zero over 
the one-element group. 

THEOREM 1. Let S = M0(G; J, A; P). Then the following statements 
are equivalent: 

(a) S=GXE/GX {o}, where E is a rectangular 0-band; 
(b) there exist invertible matrices U (IXI) and V (AXA) such that 

Q = VP U is a regular matrix all of whose nonzero entries are equal to 1 ; 
(c) there exist mappings a : I—>G, /3:A—>G such that p\i = P(\)a(i) 

ifPu^O; 
(d) 5 is O-rectangular; 

_(e) if p\xiv p\tiv p\2iv • • • , p\nin, ^Xnn^O, then P\XpHhP\k * ' * 
PK^PKH = 1 ; 

(f) S has a subsemigroup intersecting each 30,-class of S in exactly one 
element. 

The semigroup in (f) need not be unique. We note that an analo­
gous result is valid for completely simple semigroups (i.e., without 
zero) ; in such a case (b) and (c) remain essentially the same, (a) be­
comes S^GXEy E is a rectangular band, in (d) "O-rectangular" is 
replaced by "rectangular," in (e) it suffices to take four entries of P 
at a time, and (f) states that idempotents form a semigroup (and 
thus in this case the semigroup in (f) is unique). 

An ideal / of a semigroup T is said to be a matrix ideal of T if : for 
all a, b, cÇzT, (a) aTbQI implies a £ 7 or bÇil, (b) abc(£I implies 
abÇzI or bcÇzI. 

THEOREM 2. Let S be a semigroup with a completely 0-simple ideal M. 
In order that there exist an M-homomorphism of S onto M, it is neces­
sary and sufficient that (0) be a matrix ideal of 5, and the restriction to M 
of the finest congruence p on 5, having 0 as one of its classes and such 
that S/p is a rectangular 0-band, coincides with the ^-equivalence on M. 
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A corresponding result is valid for semigroups with a completely 
simple ideal ; in such a case S/p in the theorem is a rectangular band 
(cf. [2])._ 

A semigroup T with zero is said to be O-inversive if for every a G T , 
#3^0, there exists xÇïT' such that ax is a nonzero idempotent. T is 
weakly ^cancellable if xa = xb9£0 and ay = by 5*0 implies a = b [3]. 

THEOREM 3. The following conditions on a semigroup S with zero are 
equivalent : 

(a) S is regular and all its nonzero idempotents are primitive-, 
(b) 5 is regular and for all a, x £ S , axa — a^O implies xax — x] 
(c) (i) for all a G S, there are e, ƒ £ 5 such that a — ea — of, 
(ii) to each a £ 5 , a ^ O , and e, ƒ as in (i), corresponds a unique 

a '£ .S such that aa' — ey a
fa—f; 

(d) S is O-inversive and weakly 0-cancellable] 
(e) S is O-inversive and every nonzero principal left (and right) ideal 

of S is 0-minimal ; 
(f) 5 is a mutually annihilating sum [4] of completely 0-simple 

semigroups. 

As a consequence of this theorem one obtains certain results con­
cerning inverse semigroups with zero (cf. [5]). For in (a) and (b) one 
substitutes "regular" by "inverse" which is equivalent to uniqueness 
of e and ƒ in (c), and in (f) "completely 0-simple" is replaced by 
"Brandt semigroup"; the remaining items also have their analogues 
for this case. 
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