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I t is not easy to determine how many trivial line bundles can be 
split off a stable real vector bundle; the first crucial question concerns 
bundles over a 4fe-sphere. The following result is best possible for the 
stated spheres: 

THEOREM 1. A nontrivial stable real vector bundle over SAkis the sum 
of an irreducible (2k + 1)-plane bundle and a trivial bundle, if fe>4 

This theorem follows from, and implies, the following theorem. The 
homotopy group Trq(0(n)) is stable for q<n — 1 (in which case it has 
been described by Bott [ l]) , and metastable for q<2(n — l). Except 
for the special cases # ^ 1 2 the metastable groups are related to the 
stable groups by 

THEOREM 2. For q<2(n — l) and n^l3, 

7Tq(0(n)) = 7TQ(0) 0 7Ta + l(F2n,n). 

In fact, splitting occurs in the homotopy sequence of the fibration 
0(2n) —>V2ntn a t the stated groups. The behaviour in the omitted 
cases is easily determined from known results. 

I t follows that the metastable homotopy groups of 0(n) exhibit a 
periodicity, for the second summand is a stable homotopy group of 
the Stiefel manifold: by [4], 

7Tg+l(F2n,n) « TT^RP^/RP*-1). 

Now James has shown [2 ] that these have a periodicity in a natural 
way, and in particular that if t denotes the number of nonzero homo­
topy groups of O in dimensions Sq — n, then 

irq+l(V2n,n) ~ ^'q+l+m-n(V2m,m) 

for all m^n such that m — n is divisible by 2K This isomorphism can 
be induced by a map of the appropriate skeleton of Vin%n into 
12w~nF2m,mi and so is similar to Bott 's periodicity for the stable homo­
topy groups. 

However, the metastable periodicity in 0(n) does not arise in 
exactly the same way as Bott 's. The similarity and the difference are 
shown by the next theorem. 
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THEOREM 3. The natural fibralion üSsBSO(n)—^ü88BSO has a cross-
section over the (n+As — 7)-skeletony but in general BSO(n)—>BSO does 
not have a cross-section over skeletons of dimension ^ n. 

I t follows that if q^n+^s — 7, and t (described above) is ^ 3 , then 
a*8BS0(n) and 128s+2^SO(n + 2') have the same g-type, but BSO{n) 
and Q,2 BSO(n + 2l) do not have the same n-type. 

Complete proofs and some applications will appear later; a sketch 
of the proof of Theorem 1 is given below. 

SKETCH PROOF. Theorem 1 is implied by 

THEOREM 1*. Tik(BSO(n))—>Wik(BSO) is trivial ifn^2k, and onto if 
&>4 and n^2k + l. 

The first part is easy. For the second part, by Bott periodicity 
there are homotopy equivalences 

BSp s ti*BSp s W™+*BSO (m ^ 4). 

so that there are adjoint maps 

ft»: 2*™+*BSp -> BSO, /J: 2*BSp ~> BSp. 

Then j8m includes an epimorphism of homotopy groups in dimensions 
^ 8 m + 8 , and factorizes into /?m_i o 28m-4j3 for m ^ l . Calculation of 

j8*: H4k(BSp; Z) -» H*k(V*BSp\ Z) 

shows that its image is divisible by 8 if k is odd, and by 4 if k is even. 
Now the fibre of BSO(n)—>BSO(n+4) is Fw+4,4, and the property 

of j8* together with Toda's result [3] that 

87rw+r(Fn+4,4) = 0 (n odd, r < n — 1), 

enables classical obstruction theory to prove by induction on m, with 
a little care, 

LEMMA 4. (3m: S8 w + 4 BSp-^BSO can be deformed so as to map the 
8k-skeleton into BSO(Sk + l-Am) QBSO. 

The analogous but more delicate result for the (&k+8)-skeleton is 
too complicated to merit description here. These results are not sharp 
enough to prove Theorem 1* at once; the proof is concluded by ob­
serving that the generator of 7c±h(BSp) can be represented by a com­
position 

ƒ g 
Su A i A BSp, 

where X is a (4^ —16)-fold suspension of the Cay ley plane. The co-
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homology maps ƒ*, g* can be computed sufficiently accurately for the 
proof to be completed by the same kind of obstruction argument as 
before. 
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