THE TEICHMÜLLER SPACE OF AN ARBITRARY FUCHSIAN GROUP¹

BY CLIFFORD J. EARLE Communicated by L. Bers, May 7, 1964

1. Introduction. Let U be the upper half plane. Let Σ be the set of quasiconformal self-mappings of U which leave 0, 1, and ∞ fixed. The universal Teichmüller space of Bers is the set T of mappings $h: R \rightarrow R$ which are boundary values of mappings in Σ .

Let M be the open unit ball in $L_{\infty}(U)$. For each μ in M, let f^{μ} be the unique mapping in Σ which satisfies the Beltrami equation

$$f_{\bar{z}} = \mu f_z.$$

We map M onto T by sending μ to the boundary mapping of f^{μ} . T is given the quotient topology induced by the L_{∞} topology on M. The right translations, of the form $h \rightarrow h \circ h_0$, are homeomorphisms of T.

We shall also associate to each μ in M a function ϕ^{μ} holomorphic in the lower half plane U^* . For each μ , let w^{μ} be the unique quasiconformal mapping of the plane on itself which is conformal in U^* , satisfies (1) in U, and leaves 0, 1, and ∞ fixed. ϕ^{μ} is the Schwarzian derivative $\{w^{\mu}, z\}$ of w^{μ} in U^* . By Nehari [3], ϕ^{μ} belongs to the Banach space B of holomorphic functions ψ on U^* which satisfy

$$||\psi|| = \sup |(z-z^*)^2\psi(z)| < \infty.$$

It is known [1, pp. 291-292] that $\phi^{\mu} = \phi^{\nu}$ if and only if f^{μ} and f^{ν} have the same boundary values. Hence, there is an injection $\theta: T \rightarrow B$ which sends the boundary function of f^{μ} to ϕ^{μ} . We shall write $\theta(T) = \Delta$.

Now let G be a Fuchsian group on U; that is, a discontinuous group of conformal self-mappings of U, not necessarily finitely generated. The mapping f in Σ is compatible with G if $f \circ A \circ f^{-1}$ is conformal for every A in G. The Teichmüller space T(G) is the set of h in T which are boundary values of mappings compatible with G. The space B(G) of quadratic differentials is the set of ϕ in B such that

$$\phi(Az)A'(z)^2 = \phi(z)$$
 for all A in G.

Ahlfors proved in [1] that Δ is open in B. Bers [2] proved that θ maps T homeomorphically on Δ and maps T(G) onto an open subset of B(G). These results are summed up in the following theorems:

¹ This research was supported by the National Science Foundation grant NSF-GP780.

THEOREM 1. The mapping $\mu \rightarrow \phi^{\mu}$ is continuous.

THEOREM 2. The mapping $\mu \rightarrow \phi^{\mu}$ is open.

THEOREM 3. $\theta(T(G))$ is an open subset of B(G).

Our purpose here is to give new, more elementary proofs of Theorems 2 and 3. In particular, we notice that Theorem 3 is a straightforward consequence of Theorems 1 and 2 and the lemma in the next section.

2. The space D(G). For each Fuchsian group G, we denote by D(G) the set of h in T such that $h \circ A \circ h^{-1}$ is the boundary function of a conformal self-mapping of U for every A in G. Clearly, T(G) is contained in D(G).

LEMMA. $\theta(D(G)) = B(G) \cap \Delta$.

PROOF. For each A in G and ϕ^{μ} in Δ ,

$$\phi^{\mu}(Az)A'(z)^{2} = \{w^{\mu}, Az\}A'(z)^{2} = \{w^{\mu} \circ A, z\}.$$

Therefore, $\phi^{\mu} \in B(G) \cap \Delta$ if and only if for each A in G, the restriction of $w^{\mu} \circ A \circ (w^{\mu})^{-1}$ to $w^{\mu}(U^*)$ is a linear transformation.

Let ϕ^{μ} belong to $\theta(D(G))$. Let $f = f^{\mu}$ and $w = w^{\mu}$. Let g be the conformal map of U onto w(U) such that $w = g \circ f$. For each A in G there is a conformal map $A_1: U \to U$ which agrees with $f \circ A \circ f^{-1}$ on the real axis. We put S equal to $w \circ A \circ w^{-1}$ in $w(U^*)$ and to $g \circ A_1 \circ g^{-1}$ in the closure of w(U). S is quasiconformal everywhere and conformal off w(R). Hence S is everywhere conformal, and $\phi^{\mu} \in B(G) \cap \Delta$.

Conversely, suppose $\phi^{\mu} \in B(G) \cap \Delta$. Let $w = w^{\mu}$, $f = f^{\mu}$, and $g = w \circ f^{-1}$. Given A in G, let S be the linear transformation which agrees with $w \circ A \circ w^{-1}$ in $w(U^*)$. By continuity, $S \circ w = w \circ A$ on the real axis. Therefore, $f \circ A \circ f^{-1} = g^{-1} \circ S \circ g$ on R, and the boundary function h of f belongs to D(G). But $\theta(h) = \phi^{\mu}$. Q.E.D.

3. Proof of Theorem 2. Let $\phi_0 = \phi^{\mu}$ be a point of Δ . We must show that every neighborhood of μ covers a neighborhood of ϕ_0 . Ahlfors [1] proves that if $\|\phi - \phi_0\|$ is sufficiently small, ϕ belongs to Δ . With Ahlfors, we write $\phi = \{w^{\nu}, z\}$ where $w^{\nu} = \hat{f} \circ w^{\mu}$. It suffices to prove that the complex dilatation of \hat{f} tends to zero with $\|\phi - \phi_0\|$.

According to [1, p. 300], \hat{f} is the limit of a sequence of mappings \hat{f}_n . From formula (13) of [1] and the chain rule, we compute that the complex dilatation ρ_n of \hat{f}_n satisfies

$$\|\rho_n\|_{\infty} < \frac{\|\phi - \phi_0\|}{\delta - \|\phi - \phi_0\|}$$

where δ is a positive constant depending only on μ . Obviously, $\|\rho_n\|_{\infty}$ tends to zero with $\|\phi - \phi_0\|$. Q.E.D.

4. Proof of Theorem 3. We show first that $\theta(T(G))$ contains a neighborhood of the origin in B(G). It is well known [1, pp. 297-299] that every ϕ in B with $||\phi|| < 2$ has the form ϕ^{μ} for

(2)
$$\mu(z) = \frac{1}{2}(z - z^*)^2 \phi(z^*).$$

Moreover, it is a simple consequence of the chain rule that f^{μ} is compatible with G if and only if

(3)
$$\mu(Az) = \mu(z)A'(z)/A'(z)^*$$
 for all A in G.

If $\phi \in B(G)$ and $||\phi|| < 2$, the μ in (2) satisfies (3). Hence, $\theta(T(G))$ contains the open unit ball in B(G).

Now let f^{ν} be any mapping compatible with G and let G^{ν} be the Fuchsian group $f^{\nu} \circ G \circ (f^{\nu})^{-1}$. Let $\alpha \colon T \to T$ be the right translation which carries the boundary mapping of f^{ν} to the identity. It is obvious that α maps T(G) onto $T(G^{\nu})$ and D(G) onto $D(G^{\nu})$. Let $\beta \colon \Delta \to \Delta$ be the homeomorphism $\theta \circ \alpha \circ \theta^{-1}$. By the Lemma, β maps the open set $B(G) \cap \Delta$ in B(G) onto the open set $B(G^{\nu}) \cap \Delta$ in $B(G^{\nu})$. Moreover, β maps ϕ^{ν} to zero.

We have seen that $\theta(T(G^p))$ contains the open unit ball N in $B(G^p)$. Since α maps T(G) on $T(G^p)$, $\beta^{-1}(N)$ is contained in $\theta(T(G))$. Since β is a homeomorphism of $B(G) \cap \Delta$ on $B(G^p) \cap \Delta$, $\beta^{-1}(N)$ is open in B(G). Therefore, $\theta(T(G))$ contains a neighborhood of ϕ^p in B(G). Since f^p was any mapping compatible with G, $\theta(T(G))$ is an open set. Q.E.D.

REFERENCES

- 1. L. V. Ahlfors, Quasiconformal reflections, Acta Math. 109 (1963), 291-301.
- 2. L. Bers, Automorphic forms and general Teichmüller spaces, Proceedings of the Conference on Complex Analysis, Univ. of Minnesota, 1964 (to appear).
- 3. Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551.

INSTITUTE FOR ADVANCED STUDY