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1. Introduction. Let U be the upper half plane. Let 2 be the set of 
quasiconformal self-mappings of U which leave 0, 1, and <*> fixed. 
The universal TeichmüUer space of Bers is the set T of mappings 
h: R—>R which are boundary values of mappings in 2. 

Let M be the open unit ball in L^U). For each JJL in ikf, let ƒ* be 
the unique mapping in 2 which satisfies the Beltrami equation 

(1) ƒ* = M/*. 

We map M onto T by sending /x to the boundary mapping of ƒ". T is 
given the quotient topology induced by the LM topology on M. The 
right translations, of the form h—>h o ho, are homeomorphisms of T. 

We shall also associate to each /x in M a function <£M holomorphic 
in the lower half plane £/*. For each p, let W* be the unique quasi­
conformal mapping of the plane on itself which is conformai in [/*, 
satisfies (1) in 17, and leaves 0, 1, and <*> fixed. 0" is the Schwarzian 
derivative {wM, z) of # in E7*. By Nehari [3], 4>* belongs to the 
Banach space B of holomorphic functions \f/ on U* which satisfy 

IMI = SUp | ( * - 3*)V(*)| < » . 

It is known [l, pp. 291-292] that 0" = 0' if and only if ƒ* and fv have 
the same boundary values. Hence, there is an injection 0: T—>B which 
sends the boundary function of ƒ* to <̂ M. We shall write 0(T) =A. 

Now let G be a Fuchsian group on U; that is, a discontinuous group 
of conformai self-mappings of C7, not necessarily finitely generated. 
The mapping ƒ in S is compatible with G if ƒ o A of"1 is conformai for 
every A in G. The TeichmüUer space T(G) is the set of h in T which 
are boundary values of mappings compatible with G. The space B(G) 
of quadratic differentials is the set of </> in B such that 

(t>{Az)Af(zY = 0(a) for all A in G. 

Ahlfors proved in [l] that A is open in B. Bers [2] proved that 0 
maps T homeomorphically on A and maps T(G) onto an open subset 
of B(G). These results are summed up in the following theorems: 

1 This research was supported by the National Science Foundation grant NSF-
GP780. 

699 



700 C. J. EARLE [September 

THEOREM 1. The mapping \x—»<£M is continuous. 

THEOREM 2. The mapping ju—x̂  is open. 

THEOREM 3. 0(T(G)) is an open subset of B(G). 

Our purpose here is to give new, more elementary proofs of Theo­
rems 2 and 3. In particular, we notice that Theorem 3 is a straight­
forward consequence of Theorems 1 and 2 and the lemma in the next 
section. 

2. The space D(G). For each Fuchsian group G, we denote by 
D(G) the set of h in T such that ho A o hrl is the boundary function 
of a conformai self-mapping of U for every A in G. Clearly, T(G) is 
contained in D(G). 

LEMMA. 0(D(G)) = B(G)nA. 

PROOF. For each A in G and $* in A, 

<p(Az)A'(zy = {w»9 Az}A'(z)* « {w*o A, z}. 

Therefore, 0MG5(G)nA if and only if for each A in G, the restriction 
of w* o A o (wfi)~1 to «/"( £/*) is a linear transformation. 

Let 4P belong to 0(D(G)). Let ƒ=ƒ" and w = w". Let g be the con-
formal map of U onto w(U) such that w — gof. For each 4 in G 
there is a conformai map A±: U—+U which agrees with f o A of"1 on 
the real axis. We put 5 equal tow o A o vrl in w( U*) and to g o A i o g""1 

in the closure of w(U). S is quasiconformal everywhere and conformai 
off w(R). Hence 5 is everywhere conformai, and 0M£J3(G)P\A. 

Conversely, suppose </>» £ B (G) C\A. Let w = wM, ƒ = ƒ*, and g = w o jf""1. 
Given A in G, let S be the linear transformation which agrees with 
w o A o vr1 in w(U*). By continuity, S o w = w o i on the real axis. 
Therefore, ƒ o A o f~l = g~l o S o g on R, and the boundary function 
h of ƒ belongs to £>(G). But 0(A) =<ƒ>«. Q.E.D. 

3. Proof of Theorem 2. Let 0o = 0M be a point of A. We must show 
that every neighborhood of /i covers a neighborhood of <j>Q. Ahlfors 
[l] proves that if ||</>—<£0|| is sufficiently small, <j> belongs to A. With 
Ahlfors, we write <£= {wv, z} where wF=/oW*. It suffices to prove 
that the complex dilatation of ƒ tends to zero with ||0 — </>0||. 

According to [l, p. 300], ƒ is the limit of a sequence of mappings 
/n. From formula (13) of [l] and the chain rule, we compute that the 
complex dilatation pn of fn satisfies 
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where ô is a positive constant depending only on fx. Obviously, ||p»||oo 
tends to zero with ||</>—<£0||. Q.E.D. 

4. Proof of Theorem 3. We show first that 6(T(G)) contains a 
neighborhood of the origin in B(G). I t is well known [l, pp. 297-299] 
that every </> in B with | |$ | |<2 has the form 0" for 

(2) M(2) = *(* - 2 * M S * ) . 

Moreover, it is a simple consequence of the chain rule that ƒ" is com­
patible with G if and only if 

(3) n(Az) = ix(z)A'(z)/A'(z)* for all A in G. 

U<f>Ç:B(G) and \\<t>\\<2f the/x in (2) satisfies (3). Hence, 6(T(G)) con­
tains the open unit ball in B(G). 

Now let ƒ" be any mapping compatible with G and let Gv be the 
Fuchsian group ƒ* o G o (JV)"K Let a: T—>T be the right translation 
which carries the boundary mapping of fv to the identity. I t is obvious 
that a maps T(G) onto r(G") and D(G) onto £>(G"). Let j3: A->A be 
the homeomorphism Ö o a o 0 " 1 . By the Lemma, /3 maps the open set 
B(G)C\& in £(G) onto the open set B(GV)HA in 5(G>). Moreover, 0 
maps 0" to zero. 

We have seen that 0(T(Gv)) contains the open unit ball N in B(Gv). 
Since a maps T(G) on T(GV), ^(N) is contained in 0 (JT(G)) . Since ]3 
is a homeomorphism of B(G)C\L on B(GV)C\A, jS~1(iV') is open in £(G). 
Therefore, 0(T(G)) contains a neighborhood of </>" in J3(G). Since ƒ" 
was any mapping compatible with G, 6(T(G)) is an open set. Q.E.D. 
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