ON THE LIFTING PROPERTY. III1

BY A. IONESCU TULCEA AND C. IONESCU TULCEA Communicated by Walter Rudin, September 9, 1963

1. Let Z be a locally compact space and $\mu \neq 0$ a positive Radon measure on Z. Let $M_R^\infty(Z,\mu)$ be the Banach algebra of all bounded real-valued μ -measurable functions defined on Z, endowed with the norm $f \rightarrow ||f||_\infty = \sup_{z \in Z} |f(z)|$. Let $C_R^\infty(Z)$ be the subalgebra of $M_R^\infty(Z,\mu)$ consisting of all bounded continuous functions on Z and $\mathfrak{K}(Z)$ the subalgebra of all $f \in C_R^\infty(Z)$ having compact support. For two functions f and g defined on Z we shall write $f \equiv g$ whenever f and g coincide locally almost everywhere.

Let now $T: f \rightarrow T_f$ be a mapping of $M_R^{\infty}(Z, \mu)$ into $M_R^{\infty}(Z, \mu)$. Properties of T such as those listed below will be considered in what follows:

```
(I) T_f \equiv f;
```

- (II) $f \equiv g$ implies $T_f = T_g$;
- (III) $T_1=1$;
- (IV) $f \ge 0$ implies $T_f \ge 0$;
- (V) $T_{\alpha f + \beta g} = \alpha T_f + \beta T_g;$
- (VI) $T_{fg} = T_f T_g$;
- (VII) $T_f = f$ if $f \in C_R^{\infty}(Z)$.

A mapping $T: f \to T_f$ of $M_R^{\infty}(Z, \mu)$ into $M_R^{\infty}(Z, \mu)$ satisfying (I)-(V) will be called a *linear lifting* of $M_R^{\infty}(Z, \mu)$; if the condition (VI) is also verified the mapping will be called a *lifting* of $M_R^{\infty}(Z, \mu)$. A strong linear lifting [strong lifting] of $M_R^{\infty}(Z, \mu)$ is a linear lifting [lifting] which verifies also (VII).

If $T: f \to T_f$ is a lifting of $M_R^\infty(Z, \mu)$ and A is a μ -measurable set then we shall denote by $\rho_T(A)$ the set defined by the equation $T_{\phi_A} = \phi_{\rho_T(A)}$. For each $z \in Z$ denote by $\mathfrak{V}_T(z)$ the set of all parts $\rho_T(V)$ where V belongs to $\mathfrak{V}(z)$ and is μ -measurable. If τ_T is the set of all parts $\rho_T(A) - N$ where A is μ -measurable and N is locally μ -negligible then τ_T is a topology on Z (this result is essentially due to J. Oxtoby and has been given by him in a lecture at Yale in the fall of 1960).

THEOREM 1. Let $T: f \rightarrow T_f$ be a lifting of $M_R^{\infty}(Z, \mu)$. Then the following assertions are equivalent: (1.1) T is a strong lifting; (1.2) There is

¹ Research supported by the U. S. Army Research Office (Durham) under contract DA-ARO(D)-31-124-G218.

² For $X \subset Z$, ϕ_X denotes the characteristic function of X.

³ For each $z \in \mathbb{Z}$, $\mathbb{V}(z)$ denotes the set of all neighborhoods of z.

 $V \subset M_R^{\infty}(Z, \mu)$, dense in $\mathfrak{K}(Z)$ for the topology induced by the norm $f \to ||f||_{\infty}$, such that $T_f = f$ for all $f \in V$; (1.3) $\rho_T(U) \supset U$ for all $U \subset Z$ open; (1.4) $\rho_T(F) \subset F$ for all $F \subset Z$ closed; (1.5) τ_T is stronger than the topology of Z; (1.6) For each $z \in Z$, $\mathfrak{V}_T(z)$ is a fundamental system of neighborhoods of z.

Let $M_R(Z, \mu)$ be the algebra of all locally bounded (that is bounded on every compact) real-valued μ -measurable functions defined on Z. By $C_R(Z)$ we shall denote the subalgebra or all real-valued continuous functions on Z. A mapping $T: f \rightarrow T_f$ of $M_R(Z, \mu)$ into $M_R(Z, \mu)$ which verifies conditions (I)-(VI) will be called a *lifting* of $M_R(Z, \mu)$. A strong lifting of $M_R(Z, \mu)$ is a lifting $T: f \rightarrow T_f$ such that $T_f = f$ for all $f \in C_R(Z)$.

THEOREM 2. The following conditions are equivalent: (2.1) There is a strong linear lifting of $M_R^{\infty}(Z, \mu)$; (2.2) There is a strong lifting of $M_R^{\infty}(Z, \mu)$; (2.3) There is a strong lifting of $M_R(Z, \mu)$.

REMARK. There is a compact space $Z \neq \emptyset$, a positive Radon measure μ on Z with Supp $\mu = Z$ and a lifting $T: f \rightarrow T_f$ of $M_R^{\infty}(Z, \mu)$ such that

$$Z = \bigcup_{f \in C_R(\mathbf{Z})} \left\{ z \mid T_f(z) \neq f(z) \right\}.$$

2. For a locally compact space B and a positive Radon measure α on B we shall denote by $\mathfrak{C}(B, \alpha)$ the set of all locally countable families $(K_j)_{j\in J}$ of disjoint compact parts of B such that the complement of $\bigcup_{j\in J} K_j$ is locally α -negligible.

Let now Z and B be two locally compact spaces and α a positive Radon measure on B. For each mapping $\lambda: b \to \lambda_b$ of B into⁴ $\mathfrak{M}_+(Z)$ and each $g \in \mathfrak{K}(Z)$ we shall denote by $\langle g, \lambda \rangle$ the mapping $b \to \langle g, \lambda_b \rangle$. Suppose now $\alpha \neq 0$ and let $T: f \to T_f$ be a lifting of $M_R^{\infty}(B, \alpha)$; to shorten the notation we shall sometimes write $\rho_T(f)$ instead of T_f , for $f \in M_R^{\infty}(B, \alpha)$. If $\lambda: b \to \lambda_b$ is a mapping of B into $\mathfrak{M}_+(Z)$ we shall write

$$\rho_T[\lambda] = \lambda$$

whenever there is $(K_j)_{j\in J}\in\mathfrak{C}(B,\alpha)$ with the following properties:

- (1) $\phi_{K_j}\langle g, \lambda \rangle \in M_R^{\infty}(B, \alpha)$ for every $j \in J$ and $g \in \mathfrak{K}(Z)$;
- (2) $\rho_T(\phi_{K_j}\langle g, \lambda \rangle) = \phi_{\rho_T(K_j)}\langle g, \lambda \rangle$ for every $j \in J$ and $g \in \mathcal{K}(Z)$.

A mapping $\lambda: b \to \lambda_b$ of B into $\mathfrak{M}_+(Z)$ will be called appropriate with respect to (α, T) if:

 $^{^4}$ M(Z) is the vector space of all Radon measures on Z and M₊(Z) the cone of all positive Radon measures on Z.

- (3) $\rho_T[\lambda] = \lambda$;
- (4) $\langle g, \lambda \rangle$ is essentially α -integrable for each $g \in \mathfrak{K}(Z)$ (that is, λ is scalarly essentially α -integrable if $\mathfrak{M}(Z)$ is endowed with the topology $\sigma(\mathfrak{M}(Z), \mathfrak{K}(Z))$).

Let Z and B be two locally compact spaces and μ a positive Radon measure on Z. Recall that a mapping $p: Z \rightarrow B$ is μ -proper if it is μ -measurable and if $f \circ p$ is essentially μ -integrable for each $f \in \mathcal{K}(B)$. The Radon measure $p(\mu)$ is then defined by the equations $\langle f, p(\mu) \rangle = \int_B f \circ p d\mu$, $f \in \mathcal{K}(B)$. If α is a positive Radon measure on B and $\psi: B \rightarrow R$ a locally α -integrable function then $\psi \cdot \alpha$ is the Radon measure defined by the equations $\langle f, \psi \cdot \alpha \rangle = \int_B f \psi d\alpha$, $f \in \mathcal{K}(B)$. For the above and for other definitions concerning integration see [1].

THEOREM 3. Let Z and B be two locally compact spaces, μ a positive Radon measure on Z, p a μ -proper mapping of Z into B and $\nu = p(\mu)$. Let now α be a positive Radon measure on B such that $\nu = \psi \cdot \alpha$ for some locally α -integrable function ψ . Suppose $\alpha \neq 0$ and let $T: f \rightarrow T_f$ be a lifting of $M_R^{\infty}(B, \alpha)$. Then:

- (3.1) There is a mapping $\lambda: b \rightarrow \lambda_b$ of B into $\mathfrak{M}_+(Z)$, appropriate with respect to (α, T) such that:
 - (5) $\|\lambda_b\| = \psi(b)$ locally almost everywhere for α ;
 - (6) $\int_{Z} (f \circ p) g d\mu = \int_{B} f(b) \langle g, \lambda_{b} \rangle d\alpha(b)$ for every $f \in \mathcal{K}(B)$ and $g \in \mathcal{K}(Z)$.
- (3.2) Moreover, if T is a strong lifting then λ_b is concentrated on $p^{-1}(\{b\})$ locally almost everywhere for α .
- (3.3) Let $\lambda': b \rightarrow \lambda'_b$ and $\lambda'': b \rightarrow \lambda'_b$ be two mappings of B into $\mathfrak{M}_+(Z)$, appropriate with respect to $(\alpha, T)^6$ and such that:
- (7) λ_b' and λ_b'' are concentrated on $p^{-1}(\{b\})$ locally almost everywhere for α ;
- (8) $\mu = \int_B \lambda_b' d\alpha(b) = \int_B \lambda_b'' d\alpha(b)$. Then $\lambda_b' = \lambda_b'$ locally almost everywhere for α .

The next result is in a certain sense converse to Theorem 3:

THEOREM 4. Let B be a locally compact space, $\alpha \neq 0$ a positive Radon measure on B with Supp $\alpha = B$ and $T: f \rightarrow T_f$ a lifting of $M_R^{\infty}(B, \alpha)$. Then the assertions (4.1) and (4.2) below are equivalent:

- (4.1) There is a locally α -negligible set $B_{\infty} \subset B$ such that $T_f(b) = f(b)$ for each $f \in C_R^{\infty}(B)$ and $b \in B_{\infty}$;
- (4.2) For every locally compact space Z, positive Radon measure μ on Z and μ -proper mapping p of Z into B such that $\nu = p(\mu)$ is absolutely continuous with respect to α , there is a mapping $\lambda: b \rightarrow \lambda_b$ of B

⁵ From (6) we deduce that $\mu = \int_B \lambda_b d\alpha(b)$ (i.e. μ is the integral of λ with respect to α).

⁶ Here the lifting T is not necessarily supposed to be strong.

- into $\mathfrak{M}_{+}(Z)$, appropriate with respect to (α, T) and having the properties: (9) $\mu = \int_{B} \lambda_{b} d\alpha(b)$;
 - (10) λ_b is concentrated on $p^{-1}(\{b\})$ locally almost everywhere for α .

REMARK. If T is a lifting having the property stated in (4.1) then there is a strong lifting T' of $M_R^{\infty}(B, \alpha)$ such that $T_f'(b) = T_f(b)$ for all $f \in M_R^{\infty}(B, \alpha)$ and $b \in B_{\infty}$.

3. Let Z be a locally compact space and μ a positive Radon measure on Z. To simplify some of the following statements we shall say that (Z, μ) has the *strong lifting property* whenever there is a strong lifting of $M_R^{\infty}(Z, \mu)$.

In the statements below $Z \neq \emptyset$ is a locally compact space and μ a positive Radon measure on Z with Supp $\mu = Z$.

- (A) The couple (Z, μ) has the strong lifting property in each of the following cases: (i) Z is metrizable; (ii) (Z, μ) is hyperstonean (that is Z is stonean and every rare set is locally μ -negligible); (iii) μ is atomic.
- (B) If (Z, μ) has the strong lifting property and $K \subset Z$, $K \neq \emptyset$ is a compact such that Supp $\mu_K = K$ then (K, μ_K) has the strong lifting property.
- (C) If $(K_j)_{j\in J}\in \mathfrak{C}(Z,\mu)$ is such that (K_j,μ_{K_j}) has the strong lifting property for each $j\in J$ then (Z,μ) has the strong lifting property.
- (D) Let Z_1 , Z_2 be two locally compact spaces and μ_1 , $\mu_2 \neq 0$ two positive Radon measures on Z_1 , Z_2 respectively. Suppose that (Z_1, μ_1) has the strong lifting property, Z_2 is metrizable and Supp $\mu_2 = Z_2$. Then $(Z_1 \times Z_2, \mu_1 \otimes \mu_2)$ has the strong lifting property.
- (E) Let $(Z_j)_{j\in J}$ be a family of metrizable compact spaces and for each $j\in J$ let μ_j be a positive Radon measure on Z_j with $\mu_j(Z_j)=1$ and Supp $\mu_j=Z_j$; let $Z_\infty=\prod_{j\in J}Z_j$ and $\mu_\infty=\otimes_{j\in J}\mu_j$. Then the couple (Z_∞, μ_∞) has the strong lifting property.

Denote by $C_R^{\infty}(R, +)[C_R^{\infty}(R, -)]$ the algebra of all bounded real-valued functions, defined on the real line R, continuous on the right [continuous on the left]. Let μ be the Lebesgue measure on R.

THEOREM 5. There is a lifting $T: f \to T_f$ of $M_R^{\infty}(R, \mu)$ such that $T_f = f$ for every $f \in C_R^{\infty}(R, +)$ [$f \in C_R^{\infty}(R, -)$].

4. REMARKS. (1) Theorem 1 in [1, Chap. 6, pp. 58-63], some of the results in [2] (see also [4]) and the result in [3, §6, pp. 82-84] are particular cases of Theorem 3 above. Theorem 2 in [1, Chap. 6, pp. 64-65] can be also generalized using the strong lifting. For certain other methods and results concerning the disintegration of measures see also [7]. (2) The result in (E) is essentially contained in [6]. (3) It is known that for every (Z, μ) , $\mu \neq 0$, there is a lifting

of $M_R^{\infty}(Z, \mu)$ (see [5] and [6]).

PROBLEM. Decide whether or not every couple (Z, μ) , with $\mu \neq 0$ and Supp $\mu = Z$, has the strong lifting property.

BIBLIOGRAPHY

- 1. N. Bourbaki, Intégration, Chaps. I-VI, Hermann, Paris, 1952-1960.
- 2. J. Dieudonné, Sur le théorème de Lebesgue-Nykodim. III, Ann. Univ. Grenoble Sect. Sci. Math. Phys. (N.S.) 23 (1948), 25-53.
- 3. ——, Sur le théorème de Lebesgue-Nykodim. IV, J. Indian Math. Soc. (N.S.) 15 (1951), 77-86.
- 4. P. R. Halmos, On a theorem of Dieudonné, Proc. Nat. Acad. Sci. U.S.A. 35 (1939), 38-42.
- 5. A. Ionescu Tulcea and C. Ionescu Tulcea, On the lifting property. I, J. Math. Anal. Appl. 3 (1961), 537-546.
- 6. D. Maharam, On a theorem of von Neumann, Proc. Amer. Math. Soc. 9 (1958), 987-994.
- 7. G. Mokobodzki, Barycentres généralisés, Séminaire Brelot-Choquet-Deny, Faculté des Sciences de Paris, Juin, 1962.

University of Pennsylvania