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Let F be a finite-dimensional real vector space. A proper convex
function on F is an everywhere-defined function f such that — « <f(x)
for all x, f(x) < « for at least one x, and

FOxs 4 (1 = Nx) = M(wr) + (1 — N)f(x2)

for all x; and x, when 0 <A <1. Its effective domain is the convex set
dom f= {x|f(x) <w}.Its conjugate [2;3; 6;7] is the function f* de-
fined by

1) f*(a*) = sup{ (=, %) — f(%) |x € F} for each a* € F*,

where F* is the space of linear functionals on F. The conjugate func-
tion is proper convex on F*, and is always lower semi-continuous. If
fitself is Ls.c., then f coincides with the conjugate f** of f* (where F**
is identified with F). These facts and definitions have obvious analogs
for concave functions, with “inf” replacing “sup” in (1).

Suppose f is L.s.c. proper convex on F and g is u.s.c. proper concave
on F. If

ri (dom f) N ri (dom g) # &,
where ri C denotes the relative interior of a convex set C, then
inf{f(x) — g(x) l x & F} = max{g*(x*) — f*(x*) | e F*}

This was proved by Fenchel [3, p. 108] (reproduced in [5, p. 228]).
The purpose of this note is to announce the following more general
fact.

THEOREM 1. Let F and G be finite-dimensional partially-ordered real
vector spaces in which the nonnegative cones P(F) and P(G) are poly-
hedral. Let A be a linear transformation from F to G. Let f be a proper
convex function on F and let g be a proper concave function on G. If
there exists at least one x Eri(dom f) such that x =0 and Ax =y for some
yEri (dom g), then

@ ™ {fx) — g |22 0, dx = 5}
= max{g*(y*) — fH(a%) I Y =0, A¥y* x*} ,
where A* is the adjoint of A.

1 The material in this note stems from the author’s recent doctoral dissertation
at Harvard. Support was provided under grant AF-AFOSR-62-348 at the Computa-
tion Center, Massachusetts Institute of Technology.
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The partial-orderings are, of course, assumed to be compatible
with the vector structure. The orderings in F* and G* aredual to those
in F and G, i.e. P(F*) consists of the x* such that (x, x*) =0 whenever
x=0, etc.

In particular, any F and G can be supplied with the degenerate
partial-orderings in which P(F)=F and P(G)= {0}, so that P(F¥*)
= {0} and P(G*)=G*. If Theorem 1 is then invoked, one obtains

COROLLARY 1. Assume the notation of Theorem 1, but omit the partial-
ordering of F and G. If AxEri(dom g) for at least one xEri(dom f),
then

(2') inf{f(s) — g(42) | x € F} = max{g*(y*) — f*(4*®) | y* € G*}.

When F=G and 4 =1, Corollary 1 furnishes a slightly generalized
version of Fenchel’s theorem not requiring semi-continuity.
Another new result is the following.

COROLLARY 2. Assume the notation of Theorem 1, and suppose also
that dom f, dom f*, dom g and dom g* are all linear manifolds. If any
one of the following is true,

(a) inf {f(x) —g(v)|x=0, Ax =y} is finite,

(b) sup {g*(*) —f*(x*)] y* 20, A*y* S} is finite,

(©) {(x, y»)|0=xEdom f, Ax=yEdom g} =S and

{(*, 2*)| 0 < y* € dom g*, A*y* < «* € dom f*} = F,

then all three are true. Moreover, then the “inf” and “sup” are equal
and both are attained.

This corollary is deduced from Theorem 1 and its dual (in which
the roles of the starred and unstarred elements are reversed), using
the trivial fact that ri C=C when C is a linear manifold. The ap-
propriate semi-continuity of f and g, which one needs in order that
f*¥*=f and g*¥*=g in the dual of Theorem 1, is also a consequence
of the hypothesis, because a convex or concave function is actually
continuous on any relatively open set where it is finite-valued.

Fix any b*E€ F* and ¢&EG. Let f(x) =(x, b*). Let g(y) =0 if y=¢
and g(y)=— o if ys2c. Then f*(x*)=0 if x*=b*, f*(x*)= = if
x*#b*, and g*(y*) = (¢, ¥*). In this situation, Corollary 2 yields the
important existence and duality theorems of Gale, Kuhn and Tucker
for linear programs (see [4]). Many other convex programming re-
sults, both new and old, are also contained in the theorem and its
corollaries. The common extremum value can be characterized as a
minimax.
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Theorem 1 is proved by way of a simpler theorem of some interest
in itself.

THEOREM 2. Let h be a proper convex function on a finite-dimensional
real vector space E and let K be a polyhedral convex come in E. If
ri(dom k) intersects K, then

3) inf{A(z) | z € K} = — min{h"‘(z*) | 2* € K*},
where K* = {z*CE*| (z, 2*) 20 for all s:EK }.

An outline of the proof of Theorem 2 follows. One shows first that
no generality is lost if % is assumed l.s.c. Then one observes that (3)
holds whenever ri(dom %) actually intersects ri K. This is obtained
from Fenchel’s theorem by taking f(z)=#%k(z), g(z)=0 if 3EK,
g(z)=— o if 2 K. The proof proceeds now by induction on the
dimension of K. If dim K =0, then ri K=K trivially, so (3) is true.
Assume next that (3) is true for cones of dimension less than 7, and
that dim K =r. It may be supposed that ri(dom %) does not intersect
ri K, since the other case has been covered. A separation argument
then produces a zg ©K* such that —zf €K* and

4 (z,28) =0 for all z & dom &.

Let Ko= {zEK[ (2, 23) =0}. Then K, is a polyhedral convex cone,
and dim K,<r. Hence by the induction hypothesis

(5) inf{4(z) | 2 € Ko} = — min{s*(z*) | z* € K¢}.

It is easy to see from the properties of z; that the left sides of (3) and
(5) are the same. On the other hand, because K is polyhedral,

K¢ = {2* — hzif| 2 € K*, )\ 2 0}.

Moreover, (4) and definition (1) imply that A*(z* —\zs) = h*(z*) for
all 2*€E* and A=0. Therefore the minimum of z* on K§ can be
achieved on K* itself, so that the right sides of (3) and (5) are equiv-
alent, too.

Theorem 1 is deduced from Theorem 2 by choosing

E={z= (x| EFyEG}, W9 =fa)— g0,
K ={(r,y|2z0, 42 = y}.
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