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Let F be a finite-dimensional real vector space. A proper convex 
function on -Pis an everywhere-defined function ƒ such that — <*> <f(x) 
for all x, f(x) < oo for at least one #, and 

/(X*i + (1 - X)*0 S X/(*i) + (1 - X)/(*2) 

for all Xi and x% when 0 < X < 1 . Its effective domain is the convex set 
dom ƒ = {#|/(x) < oo }. Its conjugate [2; 3 ; 6; 7] is the function/* de­
fined by 
(1) ƒ*<>*) = sup{ (*, **) - f{x) \x G F} for each x* G F*, 

where F* is the space of linear functionals on F. The conjugate func­
tion is proper convex on F*, and is always lower semi-continuous. If 
ƒ itself is l.s.c, then ƒ coincides with the conjugate/** of/* (where F** 
is identified with F). These facts and definitions have obvious analogs 
for concave functions, with " inP replacing "sup" in (1). 

Suppose ƒ is l.s.c. proper convex on F and g is u.s.c. proper concave 
on F. If 

ri (dom/) (~\ ri (dom g) ^ 0 , 

where ri C denotes the relative interior of a convex set C, then 

inf{/(*) - g(x) | x G F} = max{£*(**) -ƒ*(**) | x* G F*}. 

This was proved by Fenchel [3, p. 108] (reproduced in [5, p. 228]). 
The purpose of this note is to announce the following more general 
fact. 

THEOREM 1. Let F and G be finite-dimensional partially-ordered real 
vector spaces in which the nonnegative cones P(F) and P{G) are poly-
hedral. Let A he a linear transformation from F to G. Let f he a proper 
convex function on F and let g he a proper concave function on G. If 
there exists at least one #Gri(dom ƒ) such that x^O and Ax ^ y for some 
3>Gri (dom g), then 

inf {ƒ(*) - g(y) | x ^ 0, Ax è y} 

= max {g* (y*) — ƒ*(#*) | y* è 0, A*y* g x*}, 

where A * is the adjoint of A. 
1 The material in this note stems from the author's recent doctoral dissertation 

at Harvard. Support was provided under grant AF-AFOSR-62-348 at the Computa­
tion Center, Massachusetts Institute of Technology. 
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The partial-orderings are, of course, assumed to be compatible 
with the vector structure. Theorderings in F* and G* are dual to those 
in F and G, i.e. P(F*) consists of the x* such that (x, x*) ^ 0 whenever 
#^>0, etc. 

In particular, any F and G can be supplied with the degenerate 
partial-orderings in which P(F)^F and P(G) = {o}, so that P(F*) 
= {0} and P(G*) = G*. If Theorem 1 is then invoked, one obtains 

COROLLARY 1. Assume the notation of Theorem 1, but omit the partial-
ordering of F and G, If -4#£ri(dom g) for at least one &Gri(dom ƒ), 
then 

(20 inf{/(x) - g(Ax) I x G F} = max{g*(;y*) - f*{A*tf) \ y* G G*}. 

When F—G and A = I, Corollary 1 furnishes a slightly generalized 
version of Fenchel's theorem not requiring semi-continuity. 

Another new result is the following. 

COROLLARY 2. Assume the notation of Theorem 1, and suppose also 
that dom/ , dom/*, dom g and dom g* are all linear manifolds. If any 
one of the following is true, 

(a) inf {ƒ(x) — g(y) | x ^ 0, Ax ^ y} is finite, 
(b) sup {g*(y*)— f*(x*)\y*^0, A*y*^>x*} is finite, 
(c) {(x, : y ) ] 0 ^ x £ d o m ƒ, Ax^yÇzdom g] 7^0 and 

{(y*> **> I 0 g y* G dom g*, A*y* g x* G dom/*} ^ 0 , 

tów a// tór££ are true. Moreover, then the "inf" and "sup" are £#«aZ 
and both are attained. 

This corollary is deduced from Theorem 1 and its dual (in which 
the roles of the starred and unstarred elements are reversed), using 
the trivial fact that ri C— C when C is a linear manifold. The ap­
propriate semi-continuity of ƒ and g, which one needs in order that 
ƒ**=ƒ and g** = g in the dual of Theorem 1, is also a consequence 
of the hypothesis, because a convex or concave function is actually 
continuous on any relatively open set where it is finite-valued. 

Fix any &*G^* and cGG. Let f(x) = (x, &*). Let g(y)=0 if y = c 
and g(y) = — °° if y^c Then /* (x* )=0 if x* = b*, ƒ*(#*)= 00 if 
x*^&*, and g*(y*) = (c, y*). In this situation, Corollary 2 yields the 
important existence and duality theorems of Gale, Kuhn and Tucker 
for linear programs (see [4]). Many other convex programming re­
sults, both new and old, are also contained in the theorem and its 
corollaries. The common extremum value can be characterized as a 
minimax. 
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Theorem 1 is proved by way of a simpler theorem of some interest 
in itself. 

THEOREM 2. Let h be a proper convex f unction on a finite-dimensional 
real vector space E and let K be a polyhedral convex cone in E. If 
ri(dom h) intersects K, then 

(3) inf{*(*) | z G K) = - min{**(**) | z* G K*}, 

where X * = {z*<EE*\ (z, s*) àO for all zGK}. 

An outline of the proof of Theorem 2 follows. One shows first that 
no generality is lost if h is assumed l.s.c. Then one observes that (3) 
holds whenever ri(dom h) actually intersects ri K. This is obtained 
from Fenchel's theorem by taking f(z)=h(z), g(z)=0 if zÇ~K, 
g(z)= — 00 if zÇ£K. The proof proceeds now by induction on the 
dimension of K. If dim K = 0, then ri K = K trivially, so (3) is true. 
Assume next that (3) is true for cones of dimension less than r, and 
that dim K — r. I t may be supposed that ri(dom h) does not intersect 
ri K, since the other case has been covered. A separation argument 
then produces a s* &K* such that — 0* (£K* and 

(4) 0 , zf) ^ 0 for all z G dom *. 

Let KQ= {ZÇZK\ (2, z*)=0}. Then Ko is a polyhedral convex cone, 
and dim Ko<r. Hence by the induction hypothesis 

(5) inf{A(s) I z G Ko} = - min{ **(«*) | 2* G K0*}. 

I t is easy to see from the properties of z* that the left sides of (3) and 
(5) are the same. On the other hand, because K is polyhedral, 

Kf = {3* - Azo* I z* G K*, A ^ 0}. 

Moreover, (4) and definition (1) imply that h*(z*— \z%) â/**(£*) for 
all s*G-E* and X^O. Therefore the minimum of h* on K* can be 
achieved on K* itself, so that the right sides of (3) and (5) are equiv­
alent, too. 

Theorem 1 is deduced from Theorem 2 by choosing 

E = {z = (x, y) I x G F, y G G}, *(«) = ƒ(*) - g(y), 

Z = {{x,y)\x^0,Ax^y}. 
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