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In 1914, W. H. Young [4] introduced a modification of the Rie-
mann-Stieltjes integral which, for functions F and G defined on the 
real line with G of bounded variation on each interval and F suitably 
restricted, yields an additive interval function: 

(F) f F-dG+(Y) f°F'dG=(Y) f VrfG. 
J a J b J a 

In 1959, T. H. Hildebrandt [l] published a study of a certain linear 
initial-value problem involving these Young integrals, which ex­
tended some of the earlier results of H. S. Wall and of the present 
author (see [2] for discussion and references). In 1962, there was 
discovered a connection between the Young integral and the interior 
integral as introduced by S. Pollard in 1920 [3], viz.f the systems 

U(x)~ U(c) + (Y)f*U-dH and 7(*) = 7(c) + ( J ) f W , 

with H a function from the real line to a complete normed ring, are 
naturally adjoint to one another [2, p. 326]. Both integrals are to 
be interpreted as limits in the sense of successive refinements of sub­
divisions of the interval of integration. 

Suppose each of F and G is a function from the real line to the 
complete normed ring N. If each of F and G is of bounded variation 

1 Presented to the Society, July 18, 1963. 
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on the interval [a, b] then each of (Y)fb
aF'dG and {I)fb

adF-G is known 
to exist. Hence, the latter integral exists under the condition that F 
is of bounded variation on [a, b] and G is quasicontinuous, i.e., each 
of the limits G(x — ) and G(x+) exists for each number x. Here is 
a new connection between these integrals, which also provides a new 
existence theorem for the former one. 

THEOREM A. If each of F and G is a function from the real line to the 
complete normed ring N, Fis of bounded variation on the interval [a, b]1 

and G is quasicontinuous, then 

(F) f F-dG+ (/) f dF-G = F{b)G(b) - F(a)G(a). 

INDICATION OF PROOF. If aSx<y<z^b then 

PT«F(*) [G(*+)-G(*)]+F^ 

+ [F(z) -F(x)]G(y) - [F(z)G(*)-F(x)G(x)] 

= [F(x) -F(z)] [G(x+) - G(y)] + [F(z) -F(y)] [G(x+) - G ( * - ) ] , 

so that one has the estimate 

| IF | S 2 ( f I dF | j (L.U.B. | £?(») - GO) | for « < u < v < z). 

ADDENDUM. AS has been observed by Randolph Constantine (an 
oral communication in seminar), the hypotheses on F and G in 
Theorem A can be interchanged. To see this, one first notes the 
identity 

[F(*)-F(x)]G(y) 

= F(z)G(z) -F(x)G(x)-F(x) [G(y)-G(x)] -F(«) [G(z)-G(y)] ; 

next, if H is a simple step-function and {tp}ln is an increasing numer­
ical sequence with to = a and hn — b, 

n n I 

X [F(hp) - F(hp-a]G(hp-d - E [B(tt,) ~ H(ttp-à]G(fo-d 
1 1 I 

£ \F-H\la,b](\G(a)\ + \G(b)\ + ƒ \dG\y 

where | F—H\ [„,« = L.U.B. | F(u) — H(u)\ for u in [a, b], and also 

| (7) ƒ F-dG-(Y)f H-dG\ ^ \F-H\la,bl(f
b\dG\\. 
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Thus, an argument is easily made to establish the following somewhat 
stronger theorem. 

THEOREM B. If each of F and G is a quasicontinuous function from 
the real line to the complete normed ring N, and one of F and G is of 
bounded variation on the interval [a, 6], then 

(F) f F-dG+(I) f dF-G = F(b)G(b) - F(a)G(a). 
J a J a 

REMARK. The reader is invited to contrast this formula with the 
corresponding result involving Young integrals alone (or interior 
integrals alone), as obtained by Hildebrandt [l, p. 355] for the case 
that both F and G are of bounded variation. For this case, there is a 
more general result available, as indicated in the following theorem. 

THEOREM C. If Axioms I and II [2, p. 321] hold, each of F and G 
is a function from the interval [a, b] to N, and dG(x, z)=Ki[l](x, z) 
and dF(x, z)=Ki[\]{x, z) for a^x<z^b, then 

KxlF^b) + K*[G](a,b) 

= F(b)G(b)+ £ {dF-K![U] + K*[l.]-dG- dF-dG}(z-,z) 

- F(a)G(a) - X [dF-Ki[lm] + Kt[U]-dG - dF-dG}(x, * + ) . 
a£x<b 

REMARK. After obtaining the preceding results, the author learns 
(July 27, 1963) that Theorem B has been discovered by T. H. Hilde­
brandt (on May 28, 1963) for numerical valued functions F and G: 
that priority of discovery is hereby cordially acknowledged to Pro­
fessor Hildebrandt. 
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