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1. Following the investigations of Pontrjagin [6] and Iohvidov [3]
on linear operators in a Hilbert space with an indefinite inner prod-
uct, M. G. Krein [5] proved the following theorem.

TuEOREM (PONTRJAGIN-IOHVIDOV-KREIN). Let E be the Hilbert
space of infinite complex sequences x = {x,} with convergent Y ;.. |x.~ ] Z,
with norm ||x|| = (D2, | x:| D)V/2 Let n be a positive integer and let
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for x={x:} EE. If a linear transformation ¢: E—E is continuous in
the norm topology, and if
(1) Ja(x) 20 tmplies Jnu(p(x)) = Tn(x),

then there exists an n-dimensional linear subspace F of E such that:
(i) ¢(F)CF; (ii) J.(x) =0 for xE F; (iii) every eigenvalue of the restric-
tion of ¢ on F is of absolute value =1.

This theorem is stronger than a result which Iohvidov [3] derived
from the fundamental theorem of [6]. Iohvidov’s theorem is so re-
lated to Pontrjagin’s fundamental theorem that either one can be
obtained from the other by a transform analogous to the Cayley
transform (see [4]). Pontrjagin’s proof of his theorem uses delicate
and rather complicated arguments. Krein's proof of the theorem
stated above is much simpler and consists of an ingenious application
of the fixed point principle.

In the present note we shall prove two results similar to the
Pontrjagin-Iohvidov-Krein theorem but of much more general na-
ture, on existence of invariant subspaces of certain linear operators.
It will be seen that the Pontrjagin-Iohvidov-Krein theorem can be
derived from our Theorem 2. All topological vector spaces considered
here are implicitly assumed to be real or complex topological vector
spaces satisfying the Hausdorff separation axiom.

2. We shall need the following lemma which was proved in [2].

LEMMA. Let X be a nonempty compact convex set in a topological vector
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space. Let A be a closed subset of X X X with the following two properties:
2) (x, x)EA for every xEX.
(3) For each xEX, the set {yEX: (x, y) &4 } is convex (or empty).
Then there exists a point x,&X such that (x1, ) EA for all y& X.

THEOREM 1. Let E=E;XE; be the product of two locally convex
topological vector spaces Ei, E,, of which E. is of finite dimension n.
Let S be a set in E with the two properties:

(4) For each uE Ey, the set S(u) = {‘UEEz: (u, v) ES} is compact and
convex.

(5) There exists an n-dimensional linear subspace L of E such that
LCS and m(L) = E,, where my denotes the projection from E=E;XE,
onto E;.

Let ¢: E—E be a continuous linear transformation satisfying the
Jollowing condition:

(6) For every n-dimensional linear subspace L of E such that LCS
and m(L) = E,, there is an n-dimensional linear subspace M of E such
that MCS, (M) =E, end ¢(L)C M.

Then there exists an n-dimensional linear subspace F of E such that
FCS, m(F)=E; and ¢(F)CF.

Proor. Let £(E;, E) be the vector space of all linear transforma-
tions from E; into E. Let 3 be the topology of simple convergence for
&(E4, E) (see [1, Chap. III, p. 18]). Because E; is finite dimensional,
3 is also the topology of bounded convergence. The locally convex
topological vector space obtained by topologizing £(E;, E) with 3
will be denoted by £4(E,, E).

Denote by 7 the projection from E = E; X E; onto Es. Let X be the
set of all those £ £(E;, E) such that 7, o £ is the identity mapping on
E; and £(E;) CS. In other words, X is the set of all £E £(E;, E) such
that (m 0 &) (u) =u and (12 0 £) (u) €S(u) for every uE E;. Since S(u)
is convex, X is a convex set in £(E;, E). For each £€ X, the image
L=§(E,) is an n-dimensional linear subspace of E such that LC.S
and mi(L) = E;. Conversely, if L is an n#-dimensional linear subspace
of E such that LC.S and mi(L) =E;, then each #E€E; determines a
unique point £(u)EL such that m(£(x)) =u; the so-defined £ is in
% and £(E;) =L. Hence {£(E1): g€ %} is the set of all n-dimensional
linear subspaces L of E such that LC.S and 7 (L) = E:. In particular,
(5) asserts that X is nonempty.

Let {el, €, -, e,.} be a basis of E;. Let V be a balanced (i.e.,
“équilibré” in [1]) convex neighborhood of 0 in E;. Since each S(e;) is
compact, there is an €>0 such that € S(e;)CV for 15:5n. If
u= " Ne; and 2, ])\.-I <e¢, then for every (€EX we have
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(r20E) (1) = D0 Ni(m208) (6:) € D11 NiS(e) C V. Thus {mof: (€ &}
is an equicontinuous set of linear transformations from E, into E..
Since 0 £ is the identity mapping on E; for every £E X, it follows
that & is an equicontinuous set in £(E;, E). For each € E;, the set
{E(u): (€%} is contained in {u} X S(u) and therefore is relatively
compact in E. Consequently the equicontinuous set X is relatively
compact in £5(E, E). It is easy to verify that X is closed in £5(E;, E).
Hence X is a nonempty compact convex set in £5(E;, E).

Consider an arbitrary £E X and let L=£(E,). By (6), there is an
n-dimensional linear subspace M of E such that MCS, m(M)=E,
and ¢(L) C M. Let nE X be such that n(E,) = M. For each uEE,; we
have (¢ 0 &) (u) Ed(L) Cn(EL), so there is a 1 E E; such that (¢ o £) ()
=mn(u1). Since (m; 0 9) (%) =u;, we have

(momo¢of)(u) = (nomon)(u)
= n(u1) = (¢ 0 ) (w).

Hence nomo¢poé=¢ ok Thus for every £EXR, there exists an
NEX withpob=nomogpokt.
We claim that there exists a £€ X such that

O] ¢o§=§omo¢oo§.

Let {,},er be the set of all continuous seminorms on £5(E;, E) (see
[1, Chap. II, pp. 93-97]). For each »&1, let ®, denote the set of all
£E X satisfying p.(poé—Eomo¢do0£)=0. Then the existence of a
fcx satisfying (7) is equivalent to (er & . The function
E—pot—fomogof from £4(E;, E) into itself is easily seen to be
continuous, so each ®, is a closed subset of &. By compactness of X,
in order to show M,er ®,# &, it suffices to prove that N}, ®,;= &
for every finite subset {vl, Vg, * * * vk} of I. Given {V1, Vo, * * ¢, Vi
C1, let @ denote the set of all (¢, 7) €KX X X satisfying

k k
> p(¢p0t—tomodod) £ D p,(¢0t—nomodod).

=1 =1

One verifies easily that (¢, n)—¢pof—nomo¢of is a continuous
function from £5(E;, E) X £5(E;, E) into £4(E;, E); so @ is a closed
subset of XX K. Clearly (&, £)E@ for every £€ XK. Since the semi-
norms are convex functions, for every £E X the set {'qE x: (&) EEG}
is convex (or empty). By our Lemma there exists a £,E X such that
(&1, 1) €@ for all nEXR. As we have seen above, there exists nEX
satisfying ¢ 0 £&1=m, 0 11 0 ¢ 0 &1 This equation and (1, 7)) €@ imply
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that p,(pobi—E1omodo0&)=0 for 1Sk, ie., HEN, &)= D,
This proves the existence of a £€ X satisfying (7).

Finally, let F=£(E;). Then dim F=#, FCS and m(F) = E;. By (7)
we have ¢(F)=(¢pof)(E)=(fomo¢of)(E)CEE)=F, which
concludes the proof.

3. In the next theorem, we are interested in linear subspaces F
which are not only invariant under ¢ but satisfy ¢(F)=F.

THEOREM 2. Let E=E, X E, be the product of two locally convex topo-
logical vector spaces Ei, Es, of which Er is of finite dimension n. Let S
be a set in E with the properties (4), (5). Let ¢: E—E be a continuous
linear transformation satisfying the following condition:

(8) For every n-dimensional linear subspace L of E such that LCS
and m(L) = E1, we have dim ¢ (L) =n and ¢(L)CS.

Then there exists an n-dimensional linear subspace F of E such that
FCS, mi(F)=E, and ¢(F)=PF.

ProoOF. Let L be an n-dimensional linear subspace of E such that
LCS and mi(L)=E; Suppose x&L and (7 0¢)(x)=0. Then for
every scalar o we have ¢lax) € ¢(L) C S and (m: 0 ¢)(ax)
ES((mr09)(ax)) =S(0). As S(0) is compact and contains a- (w2 0 @) (x)
for every scalar o, we must have (m20¢)(x) =0 and therefore ¢(x) =0.
This shows that LNKer(m o ¢) =LNKer ¢. By (8), dim ¢(L)=mn,
so LNKer ¢={0}. Hence LNKer(mo¢)={0}, which means
dim(m 0 ¢)(L) =dim L, i.e., (m1 0 ¢)(L)=E, Thus, for every linear
subspace L of E such that dim L=#, LC.S and m(L) = E1, ¢(L) again
has these properties. Therefore condition (6) of Theorem 1 is satisfied.
By Theorem 1, there exists an #-dimensional linear subspace F of E
such that FCS, m(F)=E; and ¢(F) CF. But dim ¢(F) =n, so ¢(F)
=F.

CoROLLARY 1. Let E=E\X E; and S be the same as in Theorem 2. Let
¢: E—E be a continuous linear transformation. If ¢(S)CS and no one-
dimensional linear subspace is contained in SMKer ¢, then there exists
an n-dimensional linear subspace F of E such that FC.S, mi(F)=E, and
¢(F)=F.

COROLLARY 2. Let a Banach space E=EyXE; be the product of two
Banach spaces, of which E, is of finite dimension n and E. s reflexive.
For x = (u, v) EE1 X E,, let

) g(@) = [lullx = o]l
where ||-||s and || ||z denote the norms in Ey and E, respectively. If
¢: E—E is a continuous linear transformation such that
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(10) x50 and q(x) 20 imply ¢(x) %0 and q(¢p(x)) =0,
then there exists an n-dimensional linear subspace F of E such that
¢(F)=F and q(x) 20 for all x€ F. If ¢ satisfies the stronger condition:
(11) %540 and g(x) =0 imply q(p(x)) >q(x),
then every eigenvalue of the restriciion of ¢ on F is of absolute value > 1.

ProoF. In the weak topology of E, ¢ remains to be continuous. Let
S= {xEE: g(x)=0 } . Since E. is reflexive, for every uESE;, S(u)
= {vEEs: ||v]|2=]|4||1} is convex and weakly compact. Condition (10)
asserts that ¢(S) CS and SNKer ¢ = {0}. By Corollary 1 there exists
an n-dimensional linear subspace F of E such that ¢(F) = F and ¢(x)
z0forallx& F. If, in addition, ¢ satisfies the stronger condition (11),
and if 0#x & F and ¢(x) =Ax, then we have ])\l q(x) =q\x) =q(p(x))
>g(x) 20, whence |\| >1.

It is clear that Corollary 2 is valid for many functions ¢ other than
that defined by (9). For instance, we could have used ¢(x)= ”u”f
——“71“2 With this ¢ in the case of a Hilbert space E, Corollary 2 be-
comes the Pontrjagin-Iohvidov-Krein theorem except that hypothesis
(1) is replaced by the stronger condition:

(12) %0 and J,(x) 20 imply J,(¢p(x)) > Ja(x).

In Krein's proof, the theorem was first established under this stronger
hypothesis (12), the general case was easily accomplished by approxi-
mating ¢ by linear transformations satisfying (12).
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