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1. Introduction. Let S be a commutative divisible semigroup whose 
binary operation is denoted by + . If for any element x of S and for 
any positive integer ny there is an element y £ S such that 

x = n*y = y + • • • + y, n times 

then 5 is said to be divisible. If y is unique then S is called uniquely 
divisible. For example the additive semigroup R of all positive ra
tional numbers is a uniquely divisible semigroup, while the additive 
group R/iX) of all positive rational numbers mod 1 is divisible but 
not uniquely divisible. 

In this note we report some results on commutative divisible semi
groups, especially minimal commutative divisible semigroups, with
out proof. The proof of the theorems will be given in another paper 
[6]. Throughout this paper any semigroup is assumed to be com* 
mutative, and "commutative" will be often omitted. 

2. Fundamental theorems. The following basic propositions are 
used for the discussion in this paper. 

(2.1) Any homomorphic image of a divisible semigroup is divisible. 
(2.2) If Si (i = l , • • • , k) axe divisible (uniquely divisible) then 

the direct product of Si is also divisible (uniquely divisible). 
Suppose a system of divisible semigroups Sa (a G A) is given. »S£ 

denotes the semigroup o a with a two-sided identity 0 adjoined: 
x+0 = 0+x = x for all x(E5«. The semigroup obtained as the discrete 
direct product XJ«eA S« excluding the identity is called the annexed 
product of Sa, and it is denoted by H « S A •$»• 

(2.3) If Sa is divisible (uniquely divisible) then Ij[aeA Sa is also 
divisible (uniquely divisible). 

A commutative semigroup 5 is called power-cancellative if n*x 
— n*y implies x=*y for every n* 

(2.4) Any power-cancellative semigroup S can be embedded into 
the smallest uniquely divisible commutative semigroup T in the 
following sense: If S is embedded into a uniquely divisible semigroup 
U, then T is embedded into U. 

This was obtained by Hancock [2] and also by the author ([4] or 
[5]) independently. 

For example the additive semigroup I of all positive integers is 

713 



714 TAKAYUKI TAMÜRA [September 

embedded into the additive semigroup R of all positive rational 
numbers. The following theorem is important. 

THEOREM 1. A commutative semigroup S is divisible if and only if 
there is a set V such that the annexed product I J ae r Ra is homomorphic 
onto S where each of Ra's is isomorphic onto the additive semigroup R of 
all positive rational numbers. 

3. Divisible semigroups of degree 1. If a divisible semigroup 5 is 
a homomorphic image of I J ae r i?«, Ra=R, with | r | =X and it can
not be any homomorphic image of I l «e r ' Ra with | T ; | <X, then X is 
called the degree of S. As a simplest case, we determine all the types 
of divisible semigroups of degree 1. 

THEOREM 2. Let %be a non-negative real number, G be a subgroup of 
the group R* of all rational numbers with respect to addition. All con
gruences on the additive semigroup R of all positive rational numbers are 
given by the following: 

(3.1) apib 

(3.2) apjb 

(a = b a, b < £} 
(3.3) apzb iff< > , £ irrational > 0. 

U — b G G a,b > £; 
The f actor semigroup R/pi is denoted by i?i(£, G). Any divisible semi
group of degree 1 is isomorphic onto i?*(£, G). JR*(£, G) is isomorphic 
onto Rj(rj, H) if and only if i =j, n\ • G = £ • H, and G=H. 

If G is a cyclic subgroup generated by a rational number r, we de
note Rfa G) by Ri(£, r). 

4. Minimal divisible subsemigroups. We have the following theo
rem: 

THEOREM 3. Let S be a divisible semigroup and T be a subsemigroup 
of S. Then there is at least one minimal divisible subsemigroup U con
taining T. U is called minimal if there is no divisible subsemigroup V 
such that TQVCUCS. 

There may be more than one minimal divisible subsemigroup U 
containing T, but they are not necessarily isomorphic. Accordingly 
we can say that the analogy to Kulikov's theorem (cf. [ l ] or [3]) 

(a = b g, 0 S H 
iffi . - „ l v ^ » { rational > 0, 

U - 5 G G a, b > £J 
(a = b a, b < £) 

#1 * / - r* l s , P J rational £ 0, 
\a — b G G a}b è £/ 
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in the theory of divisible groups does not hold as the following exam
ple shows. 

EXAMPLE. Let R be the additive semigroup of all positive rational 
numbers and let -4=i?i(l, 3), JB=i?2(2, 3); and the natural homo-
morphisms of R onto A and B due to p* are denoted by <f> and ^ 
respectively. Consider the union S — AKJB in which we identify ele
ments of A with those of B as follows: 

a$ = ^ i f f a ; = ; y = l or » > 1, 31 ^ 2, * a y (mod 3). 

Neither elements of {x</> ; x < 1} nor of {y\p ; y TA 1, y < 2} are identified 
with any other elements. A binary operation in S is defined as follows: 
Let a£-4, J£2?, and let #$ = a, y^ — b* 

a + b~x<j> + yrj/— (x + y)<l>. 

Let C be the cyclic subsemigroup generated by 1: C= {l, 2, 3, 4} 
with 2 = 5. A and B are minimal divisible subsemigroups containing 
C, but A and B are not isomorphic. 

5. Embedding of a commutative semigroup into a divisible semi
group. Any commutative semigroup S can be embedded into a com
mutative divisible semigroup T. This was proved by Hancock [2]. 
We can clarify minimality of T in the following way. 

THEOREM 4. Any commutative semigroup S can be embedded into a 
minimal divisible semigroup T in the sense that T contains no commuta
tive divisible proper subsemigroup T' containing S. Let 5 be the totality 
of all nonisomorphic minimal semigroups containing S. 3 is a complete 
lattice with respect to the ordering Ta = Tp meaning that Ta is homo-
morphic onto Tp; and hence there are To and T\ belonging to 3 such that 

(5.1) T\ is homomorphic onto any TaG3. 
(5.2) Every r « £ 3 is homomorphic onto TQ. 

EXAMPLE. Let 5 be a cyclic semigroup {1, 2, 3, 4} generated by 1 
where 2 = 5 is a generating relation. All the minimal divisible semi
groups into which S can be embedded are given by the following: 

Let £, y be real numbers 1^£ = 2, l^rç^2. 
r i = i?2(2, 3), r 0 = i?i(l, 3), and Rfâ, 3) where £T*1, ^ 2 ; *'= 1 or 2 

if £ is rational ; i = 3 if £ is irrational. Clearly i?»(£, 3) is isomorphic onto 
RA*!* 3) if and only if i=j, £ = ??. 

6. Remark. The example in §3 is not only a simplest case but also 
it plays an important rôle in the general theory of divisible semi
groups. A minimal divisible subsemigroup of a divisible semigroup 
containing an element is of degree 1. According to Theorem 1, to 
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study any divisible semigroup, we need consider all congruences of 
]R= | J a jRa. For this purpose the following general result is used: A 
congruence of a commutative cancellative semigroup S is determined 
by a system of ideals of 5 and a system of subgroups of the quotient 
group of 5. 
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1. Introduction. In this paper we use the terminology introduced 
by Brown in [2]. We consider an (w--i)-sphere S embedded in 5n 

and try to determine if the components of 5n — S have closures that 
are n-cells (i.e. if 5 is flat). Brown has shown that if S is locally flat 
at each of its points, then 5 is bi-collared [2]. Hence, in this case, 5 
is flat. The principal result of this paper is that if S is not flat in 5n, 
n>3, and E is the set of points at which S fails to be locally flat, then 
E contains more than one point. This is a fundamental point at 
which the embedding problems for n>3 differ from those for w*=3. 
Throughout this paper we will assume that n>3. 

2. Outline of proof of principal result. By combining Theorem 1 of 
[2] and Theorem 2 of [l] one can establish the following. 

LEMMA 1. Let S be an (n — 1)-sphere in Sn and G a component of 
Sn — 5. If S is locally collared in CI G, then S is collared in Cl G and 
Cl G is an n*celL 


