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LEO SARIO 

1. Introduction. The starting point of the value distribution theory 
of complex analytic mappings was Picard's classical theorem: an ana
lytic mapping of the complex plane into the extended plane can omit 
at most two points. During the 83 years that have elapsed since the 
publication of Picard's theorem, the evolution has taken place to
wards greater generality: the Picard-Nevanlinna theory was first 
extended from the plane to more general plane regions by af Hallström 
[4], and then to various Riemann surfaces by Ahlfors [ l ; 2] , Heins 
[5], Kunugui [7], Kuraipochi [8], Myrberg [9], Noshiro [lO], 
Ohtsuka [11], Parreau [ l2] , Tamura [16], Tsuji [17], Tumura [18], 
and others. 

The most general result was obtained in 1960 by Chern [3], who 
considered as domain R a closed Riemann surface less a finite number 
of points, and as range S a closed Riemann surface. He showed that 
under a complex analytic mapping Ç—f(z) of R into 5, z and f being 
the local complex parameters, the number P of Picard points, and 
more generally the defect sum, cannot exceed the negative of the 
Euler characteristic of S: 

(1) P ^ - es. 

This beautiful result of Chern's paves the way to the following 
question : can generality be pushed further by allowing both R and 
5 to be arbitrary? A priori this did not seem likely. In fact, Heins [S] 
had exhibited a rather simple Riemann surface of infinite genus, 
which carried meromorphic functions with infinitely many Picard 
values. A closer look at the situation reveals, however, rather inter
esting new aspects. To this end let us consider current methods and 
see if we can introduce simplifications which permit greater general
ity. Our report has appeared in extenso in [14]. 
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2. Proximity function. The first tool needed is a function to de
scribe the proximity of a generic point f G S to a given point a G S-
The standard method is the following: one first forms a conformai 
metric with area element do)=\2dS, where dS is Euclidean area ele
ment in the parametric disk, and X is covariant and strictly positive. 
Throughout our presentation let /(f, a, b) be a harmonic function of 
the variable f on S with a positive logarithmic pole at a and a nega
tive logarithmic pole at b. One integrates t with respect to dco(b) over 
S. The resulting function 

(2) jo», a) = f /(f, a, b)dœ(b) 
J s 

is bounded below and has a positive logarithmic singularity at a. I t 
thus qualifies to describe the proximity of f to a. Moreover, Aq is 
simply the "density" of the metric: 

(3) Aq = X2. 

This makes it possible to use effectively the standard relations be
tween line and area integrals. 

There are, however, two drawbacks to this approach. First, if 5 is 
open, it seems difficult, if not impossible, to establish the convergence 
of integral (2). Second, even when S is closed, a rather lengthy reason
ing in partial differential equations is needed to show that Aq actually 
is X2. If 5 is open, there seems to be no way of putting the reasoning 
through. 

To overcome this difficulty, I suggest the following reversal of the 
process: start with a function 

(4) *o(r) = t(S, f o, f i) 

with given f o, f iGS . The singularities, together with a normalization 
of the additive constant, uniquely determine h if S is closed. If 5 is 
bordered and compact, then we add the condition that the normal 
derivative vanish on the border. If S is open, we take for to the directed 
limit of the function thus constructed on a bordered subregion as the 
subregion exhausts 5. The limiting function is a special case of the so-
called principal function, and its existence is assured by the related 
linear operator method [15]. The function 

(5) jo(T) = log(l + e<o<r>) 

is bounded below but continues to have a positive logarithmic pole 
a t fo. For any other point a take J(f, a, f0) and add it to $o(f). The 
singularities a t f 0 cancel and the function 
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(6) *(r, a) = jo(f) + *(r, a, f 0) 
is bounded below and has a positive logarithmic singularity at a. We 
choose this function to describe the proximity of f to a : closer prox
imity gives greater values. The function exists on every Riemann sur
face 5, open or closed, of finite or infinite genus. 

Having formed st we now introduce a conformai metric with area 
element \2dS by choosing the density X2=As=As0. It is independent 
of a. Thus the convergence problem of (2) and the proof of (3) are 
eliminated, and the metric is obtained on an arbitrary S. 

The metric has zeroes of X at the zeroes of grad to. But these zeroes 
turn out to be helpful, and, in fact, constitute a rather essential aspect 
of the theory. 

In passing, we remark that the Gaussian curvature of our metric is 
constantly 1, and its total area J s dco = 2T. As a by-product we thus 
have, on an arbitrary Riemann surface, a conformai metric (with 
zeroes of X) of constant curvature and finite total area. 

3. The characteristic function. We can now at once write down the 
first main theorem. It was earlier considered from different viewpoints 
by Heins [ó], Kuramochi [8], Myrberg [9], and Parreau [12]. Here 
we give it in a form tha t directly serves the sole purpose of our report: 
the second main theorem and Picard's theorem on an arbitrary R. 

Remove from R a parametric disk Ro with boundary j80, and con
sider an adjacent relatively compact subregion 0 with boundary 
jSo^jSa. On 0 form the harmonic function u with u = 0 on j80, u = &(0), 
a constant, on j3a, such that the flux fp0du* = 1. For ft£ [0, k] consider 
the level line fa = u~~l(h) and the region Q* = "̂"KCO, h)) between /So and 
iff*. Given a point aGS let zj be its inverse images under t and denote 
their number in 0& by vQi, a). 

For the counting function we take 

(7) A (h, a) = 2TT f v(k, a)dh. 
J 0 

I t reflects the frequency of a-points of ƒ on R. In particular, it van
ishes for a Picard point a. We choose the proximity function 

(8) B(h,a) = f s(f(z),a)du*. 

Its geometric meaning is clear: it is the mean proximity to a of the 
image /(/3/0 under ƒ of &. Finally, for the characteristic function we 
take 
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(9) C(h) - f (A - u(z))da>(f(z)). 

In contrast with the classical theory, the integrand here depends on 
the region; but this will cause no difficulty. The geometric meaning 
continues to be that C(h) is the area Jühdo)(f(z)) of the multi-sheeted 
image under ƒ of 0/» over S. 

A simple application of Stokes* formula to Q&, from which we first 
remove small disks about the Zj and let them shrink to their centers, 
gives the 

FIRST MAIN THEOREM. For every regular region ÇLC.R under an 
analytic mapping of an arbitrary Riemann surface R into another arbi
trary Riemann surface 5, 

(10) A(k, a) + B(k, a) = C(k) + 0(k). 

It turns out that for all functions of interest C grows more rapidly 
than k. Thus 0(k) is negligible, and the elegant classical balance pre
vails: the (A +B)-affinity, so to speak, of ƒ is the same for all points 
a £ 5 . In particular, for a Picard point a, A = 0 and we have a strong 
proximity of f (fa) to a. 

4. Picard points. We now come to the main question: how many 
Picard points ai, • • • , aq can exist? The answer is given by the sec
ond main theorem which we shall give for mappings of an arbitrary 
R into a closed 5. The reasoning remains valid mutatis mutandis for 
an arbitrary 5. 

I t is well known that in the classical second main theorem the 
remainder cannot be estimated for all values of the variable r. I t is 
the integral of the integral of the remainder that can be given a dom
inating function. The remainder itself can behave arbitrarily wildly 
in certain intervals whose length can be estimated but which must 
be omitted in stating the second main theorem. When one then takes 
the defect relation, these exceptional intervals and the related chang
ing of the coordinate system with varying 0 prevent the use of 
directed limits. But ordinary limits cannot be employed on an arbi
trary Riemann surface R: there is no one single parameter that would 
give an exhaustion of R. Thus the classical theory does not carry 
over to the general case. 

This difficulty can be overcome by the following simple device. We 
replace the proximity function B by the integral of its integral. Geo
metrically the first integration means that we replace the mean prox
imity of the image curve f (fa) by what is just as natural if not more 
so, the mean proximity of the image region f (tin), and then we take 
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the integral of this. Analytically this means that, in some sense, we 
bring all quantities involved to the same level of integration. Then 
the remainder term in the second main theorem has an estimate for 
every subregion ft, directed limits can be employed, and the theory 
established on an arbitrary R. 

The actual derivation of the second main theorem consists of little 
more than another application of Stokes* formula. The proof is fur
ther facilitated by the presence of the zeroes of X we referred to earlier. 
Their number is the Euler characteristic of the punctured (at f o and 
fi) S and we obtain es without using the Gauss-Bonnet formula. 
Geometrically, in the fiber bundle of unit tangent vectors on 5, we 
do not integrate over a cross-section but over a base domain on S. 
This makes it unnecessary to set up the fiber bundle, and we can dis
pense with borrowing from differential geometry. 

When the computations are carried out, we obtain the following 

SECOND MAIN THEOREM. For any Q,CR under an analytic mapping 
of an arbitrary R into a closed S, 

(11) (q + es)C2(k) < J2 Mk, a^ - A2(k}ƒ') + E2(k) 

+ 0(£8 + £2 log C(k))> 

where C2(k) is the integral of the integral from 0 to k of C(h), A2(k, ƒ') 
counts the multiple-points of /(ft), and E2(k) is the (lir-fold) thrice 
integrated Euler characteristic e(h) of ft/». 

The remainder term 0 is negligible for the nondegenerate class of 
functions which was given the following elegant characterization by 
my student Rao: there must exist a constant 0 < a < l such that 
k/C(k)->0 and, for fi0 = l0Wft, 

, v logC(*) 
(12) Hm - i L - ^ i - 0. 

For these functions we can now introduce the defect 

A2(k, a) 
(13) 0(a) = 1 - limsup-

C(*) 

For a Picard point a, this defect is obviously = 1. We also introduce 
the ramification index 

(14) 0 = liminf 'J' 
Q0-*R C2(k) 
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and what could be called the Euler index 

(15) v = hm — — • 

We obtain at once : 

DEFECT RELATION. For nondegenerate analytic mappings of an arbi
trary Riemann surface R into a closed Riemann surface 5, 

(16) £ Ô(a) + d£v-es. 

We can now throw some light into the Heins phenomenon. If C2 

grows less rapidly than E2, then t\ = <*> and there can be infinitely 
many Picard points. But even in the elementary case of the disk R, 
e.g., the identity mapping omits infinitely many points, in fact the 
entire complement of the disk. The problem of Picard values becomes 
interesting only if a growth condition is imposed upon the character
istic function. For the disk such a condition is well known. For an 
arbitrary Riemann surface we now have, in addition to the nonde-
generacy conditions k/C(k)->0 and log C(k)/C(ak)—>0, the essential 
condition reflecting the topology of R: the characteristic f unction must 
grow at least as rapidly as the Euler characteristic. For these mappings 
we have what we set out to find, a Picard theorem on an arbitrary 
R: the number of Picard values cannot exceed the excess of t\ over es. 

(17) P£ri-es. 

In the case of a sphere S, i.e., for meromorphic functions on arbi
trary Riemann surfaces, the bound 2+rj was shown to be sharp by 
an interesting example constructed by my student Rodin [13]. In 
the classical case of meromorphic functions in the plane, we have an 
elementary proof of the defect relation, and a second main theorem 
without exceptional intervals. 
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