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1. Introduction. Let M be a C°°-manifold and let TM: M-+BO be 
the classifying map of its stable tangent bundle. Recall that H* (BO ; Z2) 
is a polynomial algebra on the TFhitney classes Wi, W% • • • , Wny • • • . 
Define the ideal In (ZH*(BO; Z2) of relations between Stief el-Whitney 
classes of manifolds of dimension n as follows : 

In = H Ker TM 

where M ranges over all w-dimensional, compact, connected, C00-
manifolds without boundary. 

Let I„ denote the elements of In of dimension *. E. H. Brown [2] 
and R. Stong have shown that J* = 0 if ken/2. A. Dold [3] has cal­
culated I". In this paper we compute I» for all n and k and further­
more show, in a sense to be made precise in §3, that all of these rela­
tions are algebraic in character. In §2 we give the preliminary defini­
tions necessary for the statement of our results and in §3 we give these 
results. 

2. Right action of the Steenrod algebra. Let 

be a graded commutative algebra with unit over Z2 which is of finite 
type. Assume A, the mod 2 Steenrod algebra, acts on the left of H 
as a Hopf algebra (see [4]). This means that the Cartan formula 
holds, Sqi(h)=h2 if dim (h)=i and Sqi(h)=Q if dim (h) <i. Fur­
thermore assume H satisfies Poincaré duality. That is, Hn^Z2 and 
hÇzH* is zero if and only if hh' = 0 for all h'(EHn~\ Such an algebra 
will be called a Poincaré algebra. Following Adams [ l ] , we define a 
right operation of A on H by the condition: 

ha*h' = h* ah' 

for all ft'GIZ^-*-'' where ft£iï* and aGAjt Define 
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vi = (i)sy, 

i-o 
t - i 

Wi = E W ^ - i , Fo = 1. 
i-o 

I t is not difficult to prove the following theorem. 

THEOREM 2.1. (h)x(Sqi) = ^-oWj-Sq^'Qi) where x is the canon­
ical anti-automorphism of A. 

Suppose U is a graded commutative algebra with unit over Z2 on 
which^4 actson the left as a Hopf algebra. Let^tGZ/*, i = 0 ,1 , 2, • • • , 
where UQ= 1. Following Theorem 2.1 we may attempt to define a right 
action of A on U by the formula : 

(2.2) (uMSq*) = i > r s < r > ( * * ) . 

i-o 

In general this formula will not be consistent with the Adem relations. 
THEOREM 2.3. The formula (2.2) makes U into a right module over A 

if and only if the Ui satisfy the Wu formulae, i.e. 

* / i - r + t - l \ 
Sqr(Ui) = 2-rl lUr-tUi+t. 

e-o \ / / 
COROLLARY 2.4. If Wi = u^ (2.2) makes H*(BO; Z2) into a right 

module over A. 

COROLLARY 2.5. If A acts on the right of U according to the formula 
(2.2), then there is a unique algebra homomorphism TTJ\ H*(BO; Z%)—*U 
which is equivariant with respect to the right and left actions of A. 

3. Relations between Stief el-Whitney classes. Let SCH*(BO;Z2). 
Define In(S, geom) = fl Kerr | r where M runs over all ^-dimensional, 
compact, C°°-manifolds without boundary such that 7-^(5) = 0 . Note 
In(<t>i geom)=/ w . Similarly, define 

In(S, alg) « D Ker rH 

where H ranges over all w-dimensional Poincaré algebras such that 
T # ( S ) = 0 . Clearly In(S, alg) CACS, geom). 

Let FnCH*(BO; Z2) be the Z2 module generated by W(BO; Z2)Sqi 

for all i and j such that 2i>n—j. Note that Fn<Z.In(<t>y alg), for if 
xGIP(BO; Z%) and 2 i > » - j , TH((x)Sq<) -h'=TH(x) -SqKh') = 0 for all 
&'£iïw~*~;'. Our main theorem is the following: 
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THEOREM 3.1. In = Fn. 

COROLLARY 3.2. In = In(<l>, alg). 

COROLLARY 3.3. 

(a) ll = 0ifkSn/2. 
(b) Iln/2]+1 is the Z2 module generated by (l)Sg<n'*J+1. 
(c) I[n/2]+2 is the Z2 module generated by (l)Sq^12^2, 

W1((l)Sq^^+1) and S21((l)S«Cw/23+1). 
(d) In is the Z2 module generated by (Sql +(l)Sqi-)Hn~i (BO; Z2) 

fori=l, 2, • • • , ». 

REMARK. 3.3(a) is the theorem of Brown and Stong and 3.3(d) is 
the theorem of Dold [3]. 

REMARK. In contains the smallest ideal containing (l)Sq\ i>n/2, 
which is closed under the right and left actions of A but this ideal does 
not equal In. 

In(S, alg) may be characterized in the following fashion. Let 
J(S) qCH*(BO; Z2) <g>H*(2£(Z2, q), Z2) be the ideal generated by S® 1. 
Let Ln,qCH*(BO; Z2) ®H*(K(Z*, q), Z2) be the Z2 module generated 
by all elements of the form : 

i 

2) Sq*(u) ® Sq*-'(x) + (l)5g*-« ® * 

where i + d i m u+dimx = n. Let t 5£iïQ( i£(Z 2 , g), Z2) be the canonical 
generator. 

THEOREM 3.4. u£:Il(S, alg) if and only if u®in~kÇ:Lntn-.k+J(S)n-.k. 

REMARK. I t is not true that In({ Wi}, geom) is the ideal generated 
by In and W\. 

REMARK. I t is not true that for all 5, Iw(5, geom) = In(S, alg). 
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