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1. Statement of result. We continue our study of the function 
spaces Z£, begun in [7]. We recall that f^Ll(En) when f=Ka*<l>, 
where <££!/ (£„) . Ka is the Bessel kernel, characterized by its Fourier 
transform Ka(x) * - (1 +1 x \ 2)~ a /2 . I t should also be recalled that the 
space L?, \<p < <*>, with k a positive integer, coincides with the space 
of functions which together with their derivatives up to and including 
order k belong to IS; (see [2]). 

I t will be convenient to give the functions in Lv
a their strict defini­

tion. Thus we redefine them to have the value (Ka * cj>)(x) a t every 
point where this convolution converges absolutely. With this done, 
and if a—(n — m)/p>0, then the restriction of an fC£L%(En) to a 
fixed m-dimensional linear variety in En is well-defined (that is, it 
exists almost everywhere with respect to m-dimensional Euclidean 
measure). The problem that arises is of characterizing such restric­
tions. 

The problem was previously solved in the following cases: 
(i) When p is arbitrary, but a = 1, in Gagliardo [3]. 
(ii) When p — 2> and a is otherwise arbitrary in Aronszajn and 

Smith [ l ] . In each case the solution may be expressed in terms of 
another function space, Wv

u, which consists of those ƒ £ ! / ( £ „ ) for 
which the norm2 

is finite, when 0 < a < l . When 0 < C K < 2 , there is a similar definition 
of Wa (consistent with the previous one for 0 < a < l ) which replaces 
the difference ƒ (x — y) —f(x) by the second difference ƒ (x — y) -\-f(x+y) 
— 2f(x). Finally for general a^2, the spaces W% are defined recur­
rently by fGWl w h e n / G L ' and df/dxHGW*-lt k=ly • . • , ». 

In stating our result we let Em denote a fixed proper m dimensional 
subspace of Eny and Rf denote the restriction to Em of a function de­
fined on En. 

1 The author wishes to acknowledge the support of the Alfred P. Sloan Foundation. 
2 Such norms were considered when w = l in [5]. The space is also considered in 

[ó] and [9]; in the latter it is denoted by A£*\ 
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THEOREM, (a) The restriction mapping R is continuous from L%(En) 
to Wl{Em), if (} = a~(m — n)/p, as long as j3>0, and Kp< <*>. 

(b) Conversely, there exists a linear extension mapping 8, defined on 
functions of Em to f unction of Eni so that S is continuous from Wp(Em) 
to Lv

a(En), and R(£>(g))=gfor every gÇzWp(Em), as long as /3>0 and 
Kp< 00.3 

I t should be pointed out that the spaces L«, when either a is inte­
gral or p = 2, are in some sense exceptional. Only in these cases can 
the elements of Lv

a be characterized in terms of the Lv modulus of 
continuity (i.e. conditions bearing on ||/(x —y) — ƒ(x)11p when say 
0 < a ^ l ) . In particular, Lv

a is equivalent with Wv
a only if p — 2; see 

Taibleson [9]. I t is known4 that the restrictions of Wa(En) are ele­
ments of W%(Em) with j3 = a~(n — m)/p. As we shall see, this result 
is an immediate consequence of our theorem. Thus we have the inter­
esting situation of two different spaces, Lv

a and W%, having identical 
restriction spaces. 

2. Proof of the Theorem. What follows is a sketch of the proof, 
details omitted. We consider the case m — n — \, 0 < a < l ; the general 
case is dealt with similarly. We shall make consistent use of the fol­
lowing notation: latin letters, x, y, z> • • • will stand for variables of 
£n_i considered as a subspace of En; greek letters £, rj, f, • • • for 
points in Ei, which is the orthogonal subspace. Thus the pair(x,£) 
belongs to En. Also if fix, £) is a function defined on En, then | | / ( - , j~)\\p 

will denote Lv norm with respect to the x variable, § fixed; | | / ( - , ' ) | |* 
will denote the norm taken over both variables. Using the same con­
vention, ||g(- +3/)— g(')IU will stand for 

a +00 \ I / P 

I g(x + y) - g(x) \PdxJ . 
We make consistent use of the following classical estimate [4], 

LEMMA. If $(£) =foK(i, y)<t>(y)drj, where K is homogeneous of degree 
- 1 , then / T l ^ C ö l ^ ^ ^ / r l ^ ) ! ^ , where 

ƒ* 00 

I K(ly rj) I ri-^drj < 00. 
0 

Now suppose tha t /G££CE„) ; then /=i£«*<£ where <j>£:Lv(En); 
and the norm of/ in Z>, \\f\\Pta, is given by ||/ |U« = | M U L e t 2 = -R(/)« 
Then 

3 The mapping 8 is defined on all locally integrable functions of Em. 
4 This result is due to several Soviet authors. For references see [9], and the paper 

of O. V. Besov in Trudy Steklov Inst. Acad. Sci. USSR 60 (1961), 42-81. 
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Hence, 

|«(*)l ^ f ll*(*-*,olU|jf(*,-)||^, 

where l / £ + l / g = l . From this it follows that 

(i) IUIIP S ||<K-, oil, f ||*(«, -)|M* = ^| |0| |p = A\\f\\p,a. 

This is a consequence of the fact that JEn-.§[Ka(z, • ) | | ^ < °° if 
a— l/p>0, which follows easily from the estimates 

Ka(z, Q = 0( I 212 + {«)<-»+«>/! for I z |2 + £2 -> 0, 

and 
( | z | 2 + ^)1/2> 

see [1]. 

Ofexp - Ü - J ^ — J for | z | 2 + £2-» oo ; 

Next, define &(#) by gi(x)=fBn-l<l>(x-z9 £)Ka(z, £)dz. Thus g(s) 
5=1 fgt(x)d%* We have 

llft(- + y) - ft(-)||, S |k(-, e||, f I Jf«(* - y, Ö - ^«(«, 01 * . 

Using the fact, (see, [l]) that VKa~0(\x\ * + £*)<-»-i+«>/i a nd the 
previous estimates on i£a, it can be shown that the last integral is 
dominated by ^4 |y |~ 1 + 0 ^($/ |y | ), where \p(u) = 0 ( | u\~l+a) as w->0 
and 0 ( | ^ | ~ 2 + a ) as w—»oo, ( 0 < a < l , here). From this it follows that 

H- - y) - «(Oil, 

SA\ f |€h+-lk(->öll*#+ M f UhHk(-, ölUsl-
L^uis l i / I * /l£lal»l J 

An application of the lemma then shows, since l>a>l/p, 

- 4wi; - 4/ii:~ 
Combining this with (1) above proves part (a) of the theorem. To 
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prove the converse, assume that g£W$(En_i), and g is sufficiently 
smooth. The smoothness is no restriction of generality since our esti­
mates will be seen to be uniform in the norm. To define the extension 
operator, choose ^£C0*(£ f i_i), fEn-i

xl/(x)dx = 1, and \p vanishes outside 
the unit sphere. Also choose X£C0

w(£i) so that X(0) = 1. 
Let 

(3) s(*) = M Ö = Mö I i h + 1 f g(* - y)*(y/I £ I )dy. 

Notice that ƒ(*, 0)=g(*) and | | / ( - , O l I ^ N U 
In order to prove that j f£L2(£n) , we shall consider F = / i _ a ( / ) , 

and show that F £ L Î ( E n ) . This will suffice because J\~a is a norm-
preserving isomorphism of Lv

a onto L\. To prove F(x, £)£Li(jEn) it 
suffices to show that F, dF/dxk, dF/d^ all belong to Lv(En). How­
ever, this is clear for F itself, because ƒ G Lp(En) and /i_« does not in­
crease the Lp norm. Thus we consider dF/dxk. Now 

F(x, Q - ƒ ƒ i£i_a(s, V)f(x - 2), f - *)<**&/. 

However 

*ƒ 

by (3), because 

(M) £ A\t\-*f \g(x-y)- g(x) | dy, 
\v\s\t\ 

ƒ d#* 
ip{x)dx = 0 

and ^ vanishes outside the unit sphere. Also, as we have seen 
|2£i-«(*, ö | èA(\z\2 + ?y-n+l-«»\ Therefore we see 

(4) 
dXk 

F(x, Q A f f ( I z I2 + v2){~n+1~a)l2 U - V \~n 

/ \ g(x- y - z) - g(x — z) | dty(fe<fy. 
It l ¥ l S l * - l l 

Let us now set co(y) = | | g ( - - y ) - g ( - ) | | p , ) and 

Ö(P) = p-^1"-" I u(y)dy, 0 < p < 
^ IVKP 

Then by (4) and Minkowski's inequality for integrals we get 

file:///v/s/t/
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^ A f f ( I 212 + ^2)(-»+1-«>/2 \i-n \-1+ati( | t -171 )<Ms 

Carrying out the integration of z over En_i gives 

dF 

dxk 

(•,0 £.4 f I n l -U-nh^od É-,|)<** 
p ^ - 0 0 

A two-fold application of the lemma then shows, since a>l/pi 

dF 

dxk 

\dF 

\dXk 
[0(p)]»dp g ^ -p-r 

up(y)dy 

n—l+ffp 

ƒ ƒ 
I g(ag — y ) - g ( x ) \ * 

dydx? 

Similar estimates hold for dF/d£. This completes the proof of the 
theorem. 

3. Further remarks. We have the following corollary of our theo­
rem 

COROLLARY, (a) If f G Lv
a(En)} then Rf £ L$(Em)f when /3 = a 

-(n-tn)/p>0, and Kp£2. 
(b) If gei4(Em), P = a-(n-m)/p>0, then g(g)GZ£(£n), if 

2^p< 00. 

Part (a) of the corollary is due to Calderon [2]. Part (b) is its 
appropriate converse. The corollary follows from the theorem and the 
known continuous inclusion relations WlÇiLv

a, if l ^ g £ ^ 2 , and 
LldWl iHSpS °° ; see Taibleson [9]. 

We shall now point out how to obtain an analogue of our theorem 
which replaces Lv

a(En) by Wv
a(En). Thus let fGW£(En). By part (b) 

of the theorem it has an extension to a function in En+1 which belongs 
to L2+i/p(i£n+i). By part (a) this extension, when restricted to Em, be­
longs to Wp(Em), where P — a—(n — m)/p. However this restriction is 
obviously the restriction of our original ƒ. Therefore the restriction of 

5 To prove this one may also use an «-dimensional variant of the lemma; see 
[8, Lemma (3.5)]. 
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an fE:Wa(En) belongs to Wp(Em). In the same way the analogous 
extension property is proved. 
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