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1. Introduction. The main theorem of this note shows the equiv­
alence of several extension properties for operators and contains also 
some geometrical characterizations of the spaces having these proper­
ties. In particular a characterization of such spaces is given in terms of 
intersection properties of their cells, similar to that given by Nachbin 
for (Pi spaces [8], Our theorem extends previous results of Grothen-
dieck [4]. Some applications are given, among them a new character­
ization of C{K) spaces. In this connection some problems raised by 
Aronszajn and Panitchpakdi [ l ] , Grothendieck [4] and Nachbin 
[8; 9] are solved. 

Notations. All Banach spaces are assumed to be over the reals. 
Sx(xo, r) denotes the cell { x ; x G l , ||x — xo\\ Sr}. A Banach space X 
is called a (Px space if from any Z containing X there is a projection 
on X with norm ^X (see Day [2, pp. 94-96]). We say that a Banach 
space has the metric approximation property (M.A.P.) if for every 
compact subset K of X and every e > 0 there is a compact operator 
T from X into itself such that || T\\ = 1 and || Tx-x\\ ûe for x£K. A 
(possibly) stronger property was introduced by Grothendieck [3, 
pp. 187-191]. He proved that the common Banach spaces have the 
M.A.P. I t is an open problem whether there exists a Banach space 
which does not have the M.A.P. 

2. The main results. We state now the main result of this note 
(the equivalencies l<-*2<-»3<-»5 are due to Grothendieck [4]). In the 
extension properties stated below F, Z and V will be arbitrary Ba­
nach spaces satisfying Z~2)Y, T O ^ a n d the indicated restrictions (if 
any). 

THEOREM 1. Let X be a Banach space ; then the following statements 
are equivalent: 
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(1) X** is a (Pi space. 
(2) X* is an Li(/x) space {for some measure /x). 
(3) Every compact operator T from Y to X has, for every e>0 , a 

compact extension T from Z to X with || T|| ^ ( l+e ) | | r | | . 
(4) Every operator T from Y to X whose range is of dimension S 3 

has, for every e > 0 , an extension T from Z to X with \\T\\ ^(1+€) | |T\\ , 
provided dim Z/Y — 1. 

(5) Every bounded operator T from Y to X has an extension f from 
Z to Z*** such that || T\\ = \\ T\\. (X is embedded canonically in X**.) 

(6) Every bounded operator T from Y to X has an extension T from 
Z to X such that | | r | | = | | r | | , provided that dim Z/Y— 1 and that 
Sz(0, 1) is the convex hull of SY(0, 1) and a finite set of points. 

(7) Every bounded operator T from X to a conjugate space Y has an 
extension T from V to Y with \\ T\\ = | | r | | . 

(8) X has the M.A.P. and every compact T from X to Y has a com­
pact extension T from V to Y with \\T\\=\\T\\. 

(9) X has the M.A.P. and every weakly compact T from X to Y has 
a weakly compact extension f from V to Y with || T|| = || r | | . 

(10) X has the M.A.P. and every compact T from X into itself has 
an extension f from V to X with || 11| = || r | | , provided that dim V/X — 1. 

(11) For every finite collection of cells in X, such that any two of them 
intersect, there exists a point common to all the cells. 

(12) For every collection of 4 cells in X, with radii equal to 1 and such 
that any two of them intersect, there is a point common to all the cells. 

For spaces X in which the unit cell has at least one extreme point the 
following statement is also equivalent to the preceding ones. 

(13) X is isometric to a subspace X\ of some C(K) (K compact 
Hausdorff) having the following properties : 

(a). The function identically equal to 1 belongs to X\. 
(b). If f, g, h(EXi with f, g,h^0 andf+g ^ h, then there aref, g'£-X"i 

such that 0 ^ ƒ ^ ƒ, 0 ^ g' g g and h = f +g'. 

For finite dimensional spaces X the equivalence of the properties 
( l ) - ( l l ) (except (4) and (6)) reduces to the finite dimensional case 
of the representation theorem of Nachbin, Goodner and Kelley for 
(Pi spaces (see Day [2, p. 95] and Nachbin [9]). The equivalence of 
(11) and (12) for finite dimensional spaces was proved by Hanner [5]. 
The fact that (11)<-»(12) also for infinite-dimensional spaces solves a 
problem raised by Aronszajn and Panitchpakdi [ l ] . It seems likely 
tha t it is possible to replace 3 by 2 in statement (4) but we did not 
succeed in proving this. 

The spaces X satisfying (1)—(13) do not have in general the exten­
sion property (3) with e = 0 (even if dim F = 2 , dim Z = 3). The ques-
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tion when it is possible to take e = 0 is treated in 

THEOREM 2. Let X be a Banach space. The following statements are 
equivalent : 

(1) Every operator T from YtoX whose range is of dimension S 3 has 
a compact extension t from Z, Z D 7, to X with || r | | = || r | | . 

(2) Every operator T from Y to X with a finite-dimensional range has 
an extension T, with a finite-dimensional range, from Z, ZZ)Y, to X 
with\\T\\ = \\T\\. 

(3) X satisfies (1)—(12) of Theorem 1 and the unit cell of every finite-
dimensional subspace of X is a polyhedron. 

The proof of this theorem is based on the ergodic theorem, Theorem 
1 and a result of Klee [6]. As a by-product we obtained the following 
characterization of finite-dimensional spaces whose unit cell is a 
polyhedron : 

Let B be a finite-dimensional space. The unit cell of B is a polyhedron 
if and only if f or every ZZ)B there is a function <t> from B* to Z*, con­
tinuous in the norm topologies, such that the restriction of the functional 
<K&*) to B is equal to ô* and ||<K&*)|| Hlö*ll for every b*£.B*. 

3. Examples and applications. The spaces C(K) have the properties 
(1)—(13) of Theorem 1. In fact these properties "almost" characterize 
C(K) spaces. We have 

THEOREM 3. A Banach space X is isometric to a C{K) space (K 
compact Hausdorff) if and only if it has the following three properties: 

(1) X satisfies (1)-(12) of Theorem 1. 
(2) The unit cell of X has at least one extreme point. 
(3) The set of extreme points of the unit cell of X* is w* closed. 

No one of these three properties is implied by the other two. Clearly 
(1) is not implied by (2) and (3). The subspace of C(0, 1) consisting 
of all the functions satisfying ƒ (0 )+ / ( l ) = 0 has the properties (1) 
and (3) but not (2). The space of the sequences x = (xif x%t • • • ) with 
lim Xi=(xi+X2)/2 and | |x | |=max \xi\ satisfies (1) and (2) but not 
(3). This solves a problem raised by Nachbin [8; 9] . 

No infinite dimensional C(K) space has the properties appearing in 
Theorem 2. A simple example of a space having these properties is Co. 

Grothendieck [4] conjectured that a Banach space X has property 
(1) of Theorem 1 if and only if it is isometric to a subspace of some 
C(K) consisting of all the functions ƒ satisfying a set A of equations 
of the form X a / ( ^ ) = naf(k

2
a) (aÇEA ; Xa, ixa s c a l a r s ; ^ , ^ G Z ) . We shall 

call such spaces G spaces (all M spaces [2, p. 100 ] and C9{K) spaces 
[2, p. 89] are G spaces). I t can be shown that every G space has the 
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properties (1)—(12) appearing in Theorem 1 (it is easily verified that 
it satisfies (12)). On the other hand not every space satisfying (1)-
(12) is a G space. Indeed, it can be proved that every G space whose 
unit cell has a t least one extreme point is isometric to a C(K) space. 
Hence the sequence space defined above is not a G space and this dis­
proves the conjecture of Grothendieck. 

We conclude the note with the following theorem (whose proof is 
based on Theorem 1) which solves a problem raised by Grünbaum 
and Semadeni. 

THEOREM 4. A space X which is a (Pi+€ space for every e>Q,is also a 
(Pi space. 

Detailed proofs of the theorems stated here and of various exten­
sions of them are given in [7]. 
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