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1. Two vector bundles E and F over the finite connected CW com­
plex X are /-equivalent, if their sphere-bundles S(E) and S(F) are 
of the same fiber-homotopy type. If they become /-equivalent after 
a suitable number of trivial bundles is added to both of them they are 
stably /-equivalent. 

This note concerns itself with a new stable /-invariant 6(E), which 
was suggested by the recent work of Atiyah-Hirzebruch [2] and F. 
Adams [l ]. In fact 0(E) bears the same relation to the Adams opera­
tion \pi, as the Stiefel-Whitney class—a known /-invariant—bears 
to the Steenrod operations. 

2. We assume familiarity with the Grothendieck group, KO(X), 
of real vector bundles over X, and with the extension of this functor 
to a cohomology theory : KO* (X) = £ * - ; 2 KO*(X) ; KO\X) = KO(X). 
Also that the exterior powers, 

\*:KO(X)-+KO(X) 

as defined in [3] are understood. In terms of these the Adams opera­
tions ypi, are defined as follows : 

Set \t(x) = X) **(*)*', * G KO(X), \t(x) G KO(X)[[t]]. 

Now define \p-t(x) as the power series: 

(2.1) fat(x) = - td/dt{log\t(x)} = - t\[(x)/\t(x) 

and set ypi(x) equal to the coefficient of t* in i/^(x). 
The familiar formula: \t(x+y) = X*(x) -X<(y) then goes over into 

\pt(x+y) =\pt(x) +*Pt(y) so that the xf/i are additive and therefore much 
more tractable than the X*. Note that if L is a line-bundle then by 
(2.1) \pkL~Lk. Other important properties of fa are [ l ] : 

(2.2) fa is a ring homomorphism, which commutes with the X*. 

(2.3) fa'^a = fa9. 

3. In the KO* terminology the periodicity theorem for the orthog­
onal groups [4; 2] states that the map 

1 This research was partially supported by the Air Force Office of Scientific Re­
search. 
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(3.1) KO*(X) <g> KO(S*n) -* KO*(X X S*n) 

induced by the tensor product of bundles is an isomorphism. The 
following theorem, which is implicitly contained in [2], extends this 
result : 

THEOREM I. Let E have dimension (8w + l) over X, and assume that 
the structure group of E may be reduced to Spin(8w + 1 ) . Letw: S(E)—>X 
be the associated sphere-bundle and write E for the bundle along the fibers 
in S(E). The structure group of E then has a reduction to Spin(8w), and 
we let A+(Ê) be the vector bundle associated to Ê by one of the real Spin-
representations of Spin(8w). 

Under these circumstances KO* {S(E)} is a free module over KO*(X) 
with generators, 1 and A+(E): 

(3.2) KO*{S(E)} = KO*(X)[y], y = A+(É). 

An immediate consequence of Theorem I is that formulae of the 
type: 

? 2 = A(E)y+B(E) y= A+(£). 

**y = ek(E)y + rk(E) 

must hold, and thus define four invariants of E in KO(X). The d(E) 
will be fashioned from the dk(E). 

Remark first that a fiber homotopy equivalence ƒ, between S(E) 
and S(F) induces a XO*(X)-homomorphism, ƒ* of KO*{S(F)} onto 
KO*{S(E)}. 

Hence : 

THEOREM I I . The bundles E and E' subject to the condition of Theo­
rem I are J-equivalent only if: 

(3.4) dk(E) = Bk(E') .fku/u, keZ+ 

where u(£KO(X) is an invertible element, i.e. dim u= 1. 

We have in addition: (Adams [ l ] , see also (4.7)). 

PROPOSITION 3.1. When E is the trivial bundle, then 

(3.5) Bk{E) = W\ 

One may now clearly formalize the stable instance of (3.4) and 
(3.5) as follows: 

DEFINITION. A function ƒ : Z+—>KO(X) is called a cocycle if 

(3.6) f(ts) = {*«ƒ(*)}ƒ(*), 5 , / G Z + , 
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(3.7) dim/(/) = t ^ \ 

where n(f) is a fixed integer G Z + . 
The cocycles form a multiplicative system, f-g(t) =ƒ(/) *g(0- Two 

cocycles ƒ, g are called equivalent, if there exist integers n, mÇzZ+y 

and an element uÇ~KO(X) with dim u = 1, so that : 

*<"ƒ(*) = {*^(M)/«}'«( ' ) , t(EZ+. 

The equivalence classes are then seen to form an abelian group which 
is denoted by Hl(Z+\ KO(X)). 

Consider now the bundle E of our discussion. By (3.3) and (3.S) 
the function t—>dt(E) determines a cocycle and hence an element 
6(E)GHl(Z+;KO(X)). 

THEOREM I I I . The element 6(E) is a stable J-invariant of E. Further, 
one has 0(E©JS'©7-1) = 0(E)+0(£')> so that 0 extends to a homomor-
phism 

(3.8) 0: K Spin(X) -» Hl(Z+; KO(X)). 

Here of course K Spin(X) is the subring of KO(X) generated by 
vector bundles which admit a Spin-reduction. 

I t is customary to denote the stable /-classes of vector-bundles by 
J (X) . I fwedef inee(Z)as theimageoff l :2fSpin(X)^fT(Z+; l î :0(X)) , 
then Theorem III shows that ©(X) furnishes a lower bound for J(X) 
in the sense that 0 induces a surjection of a subgroup of J(X) onto 
<d(X). 

4. We have seen that the Theorems II and III are really quite 
straight forward consequences of Theorem I. The question now arises 
how the in variâtes Ok(E), etc., are to be computed. For instance can 
they be expressed in terms of the \{(E) ? 

THEOREM IV. Let E be as in Theorem I and set A(E)(EKO(X) equal 
to the bundle which the spin representation of Spin(8w + 1) associates 
to E, via the Spin reduction of E. 

Then 

(4.1) {A(£)}2 = — \i(E) in KO(X). 

(4.2) The invariants A, B, 0&, T&, of E are given by universal poly­
nomials in A(£), and the \{(E). 

Particular examples are as follows: 

(4.3) Both, A(E) and 62(E) are equal to A (JE), 
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(4.4) B(E) = - £ ^-l(E - 1), 

(4.5) d2k+i(E) is a polynomial in the \*E. 

In general the expression for 0* is quite complicated as the following 
recipe for dk shows : 

Algorithm. Consider the ring of finite Laurent-series L~Z[xi, xf1], 
i = 1, • • • , 4w. Define y\ to, and rjk in L by: 

oo . . 4n 

E yt = (1 + /) I I (1 + tXi)(l + toTi ), 
o l 

An 

w = n fa+& )» 
in 

Vk = E[ (*i + ' • * + Xi )• 
1 

Express rjk as a polynomial in the y\ and co: 

17* = Pk(y\ <»), 

then 

&(i?) = Pk(\
i(E);A(E)). 

In special circumstance dk can of course be computed much more 
simply. As an example we cite: 

PROPOSITION 4.1. If E = 8wL + l, where L is a line bundle, then: 

(4.6) 6k(E) = (1 + L+ • • • +Z*~ l ) 

(4.7) &(£) = \ \ f 'V 

U4w + {(£4w - l) /2} (L - 1) * <wW. 

Note that (4.6) and (4.7) imply Proposition 3.1. 
The general idea behind these computations is the following one: 

If G is a Lie group, we write R0(G) for the character ring (Grothen-
dieck ring) of the finite dimensional G modules over R (see [2]). 
The exterior powers X*, and hence the ypi also may be introduced into 
these rings just as they were introduced into K0(X). From represen­
tation theory we learn tha t : 

PROPOSITION 4.2. If we write G f or Spin(8n+1), H for Spin(8w) 
and let i: H—^G be the standard inclusion. Then 
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(4.8) i* : RO(G) -> RO(H) is an injection, 

(4.9) RO(H) is a free module over RO(G) generated 
by the unit element and the spin representation A+, 

(4.10) RO(G) is a polynomial ring with generators 

p, X'p, • • • , X4nP, A 

where p is the standard (Sn + 1) dimensional G-module and A is the spin-
representation. 

COROLLARY. There are unique elements A,B,dk, TkÇzRO(G) such that 

(A+)2 = A+ ® i*A + i*B, 
(4.11) 

fc(A+) = A+ ® i*dk + i*Tk. 

Further these are well determined polynomials in X*p, A. 

The similarity of these formulae to (3.3) is clear, and in fact the 
corollary yields Theorem IV by virtue of the following two quite 
general facts: 

1. If G is a Lie group and 6 an element in RO(G), then 0 defines a 
functor £--»0(£) from principal G-bundles over X into KO(X) : if 0 is 
an "actual" G-module 0(£) is the associated vector bundle. 

2. Suppose now that £ has total space F$ and that t: H—>G is a 
closed subgroup of G. Then Y^-^Y^/H defines Y$ as a principal H 
bundle, | , over Y$/H. Consider the G/H-bundle w: YÇ/H—ÏX. Under 
these circumstances the following identity holds in KO(Y^/H). 

Permanence Law. Let a(~RO(H), /3G^O(G). Then 

(a <g> m (I) = a(l) ® 7T*0(£) in KO(Y^/H). 

REMARKS. 1. The invariant 0 seems to yield the best presently 
known information about J(X). For instance with the aid of (4.3) 
and (4.1) one may compute ®{54fc} and obtains a cyclic group of 
order equal to the denominator of the &th Bernoulli number over 4fe. 
For e { S * } , n = l , 2 m o d 8 one finds (via (4.1)) the group Z2. Finally 
this same formula leads to the result that for real projective space 
KO(Pv)c^J(Pn). This beautiful result of Adams is the central step in 
his solution of the vector-field problem on spheres. 

2. Completely analogous formulae hold for the KU theory under 
more general circumstances. (E need only admit a reduction to 
Spin(2w + l)XZ251 . ) 

3. The operation of X* in KO*{S(E)} could be determined in an 



400 G. T. CARGO [July 

analogous fashion but lead to very messy formulae, which further­
more give no additional stable information. 

4. Finally a word concerning the proof of Theorem I. I t is a known 
result tha t when X = point, then KO{S(E)} =KO(SSn) is generated 
by 1 and y. (See [2]). Hence (2.1) proves the first statement of 
Theorem I whenever E is trivial. Now an inductive Meyer-Vietoris 
argument yields the general case. 
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A CONNECTION BETWEEN TAUBERIAN THEOREMS 
AND NORMAL FUNCTIONS 

BY G. T. CARGO1 

Communicated by J. L. Doob, March 18, 1962 

The purpose of this note is to point out that certain Tauberian 
theorems follow immediately from some recent research of Lehto-
Virtanen and Bagemihl-Seidel. 

Let D denote the open unit disk, let C denote the unit circumfer­
ence, and let p(z\, £2) denote the non-Euclidean hyperbolic distance 
between the points Z\ and 22 in D. 

THEOREM. Suppose that f(z) = YLan^n and that n\an\ 
^M (n=l, 2, • • • ) for some constant M. Further, suppose that {zn} 
is a sequence of points in D converging to a point f in C with the prop­
erty that p(zn, zn+i)—>0 as n—>oo. Then, iff(zn)—^c as n—>oo, the series 
]C#„fn converges to the sum c. 

PROOF. The hypothesis implies that | / ' ( s ) | ^ t f / ( l - | s | ) . Con­
sequently, p(f(z))\dz\ ^2Md<r(z) holds for all 2 in D where p(f(z)) 
— I ƒ (z) I / ( I +1 f(z) 12) denotes the spherical derivative of ƒ and d<r(z) 
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