
SOME OBSERVATIONS ON CONTINUÜM MECHANICS 
WITH EMPHASIS ON ELASTICITY 

J. J. STOKER 

1. Introductory remarks. Twenty years ago, I gave an invited ad­
dress at a meeting of the Mathematical Society in New York. At 
that time also my subject was in the field of elasticity, and though 
I have worked perhaps more in other fields in the intervening years, 
I have never lost my interest in the subject and, particularly in the 
last few years, that interest has been strongly re-awakened. Conse­
quently, I thought it reasonable to emphasize certain types of prob­
lems in elasticity in this lecture. 

The subject of elasticity belongs, of course, to the general field of 
mechanics of continuous media. This is a classical field lying at the 
boundary between mathematics and physics which has played a very 
considerable role in the history of these two disciplines, with enrich­
ments for both resulting through the fruitful interplay of the two. 
Some glimpses and reminders of what I mean will come through to 
you, I hope, in the course of my remarks today. 

The field of continuum mechanics is a very large field, comprising, 
as it does, such diverse subjects as hydrodynamics, gas dynamics, 
elasticity, plasticity, electromagnetic theory, and one of the most 
recent and flourishing additions to the field, magneto-hydrodynamics. 
Even the field of elasticity is a very large field. Consequently, in order 
to be able to say anything intelligible in a one-hour lecture, it is neces­
sary to restrict the subject matter. I have therefore decided to con­
fine my remarks mainly to a small though important class of problems 
in the field, namely problems concerning the stability of equilibrium 
positions of elastic solids under stress. However, it is a fact that a 
large part, and an important part, of the theory of continuum me­
chanics can be developed in quite general terms and carried very far 
without being too specific about the nature of the medium to be 
treated. 

I t is feasible therefore to put my discussion in a proper mathe­
matical context by giving first a brief outline of the general theory of 
mechanics of continuous media. This is followed by a discussion of the 
stability under compression of thin elastic solids, then of thick elastic 
solids. A return to bodies of zero thickness, i.e. elastic surfaces, is then 
made. 
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Finally, I conclude with some observations of a general nature 
about mathematics in the United States, especially with respect to 
mathematics in its relation to the physical world. 

2. The mechanics of continuous media. I consider a body in three-
dimensional space and define first of all the kind of deformations 
which are to be considered. By a deformation we mean that the points 
P of the body given originally by a vector x = (#i, #2, #3) go into the 
deformed position P given by a vector x = (x\, #2, #3). The components 
of x are functions of the coordinates of the points in their original 
position and of the time t, that is, x= / (x , /), in which ƒ is vector 
valued, of course. I t is assumed in continuum mechanics that the 
mapping so induced is a topological mapping and, in addition, that 
it has continuous derivatives of a certain order with respect to the 
space variables and the time. This assumption insures, among other 
things, that the boundary of the solid goes into the boundary of the 
deformed solid, that curves and surfaces remain curves and surfaces 
after a deformation, etc. The domain of the space variables xi is that 
occupied by the medium at the time / = 0, and t ranges over positive 
values t^O. Thus we operate with what are called (with dubious 
historical accuracy, it seems) the Lagrange variables. 

Continuum mechanics is in a certain sense a branch of differential 
geometry in the large, which is, however, made more complicated by 
the necessity to consider the action of forces on the system of points 
under consideration. As in differential geometry in the large, one be­
gins with local considerations. This is, in a way, forced upon one in­
evitably because the basic laws from which one starts from the point 
of view of mechanics are Newton's laws which, as everyone knows, 
are formulated in the first instance for mass particles. In continuum 
mechanics one assumes these laws to hold in the limit, when a particle 
is shrunk down on a point, and this includes, by the way, the third 
law of Newton, namely that actions and reactions of contiguous 
particles on one another are equal and opposite. 

I turn then to considerations in the small, beginning with the no­
tion of strain. This is a purely kinematic entity which can be com­
pletely characterized by the Jacobian matrix p = pik of the trans­
formation which carries the points P into their images P in the de­
formed position. Thus we have 

/ dxA 

(2I) '-*-U' 
and the determinant \p\ of the matrix is assumed to be positive. 
The differential dx is then, of course, given by 
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(2.2) dx = pdx, 

with dx and d# regarded as 1X3 matrices. (We shall use from now 
on a matrix notation, for the most part.) I t is rather clear intuitively 
that the description of the strain condition near a given point re­
quires, a t the least, the knowledge of the manner in which the line 
elements ds a t tha t point are transformed into their images ds in the 
course of the deformation. We introduce therefore the relative elonga­
tions e given by 

ds - ds /dx*p*pdx\1!2 

(2.3) e = = ( ^ — - ) - 1 . 
ds \ dx*dx / 

The star refers to the transpose of a matrix. As we see it is the matrix 
p*p which serves to determine the elongations at a point when the line 
element varies in the directions fixed by dx. It is convenient to intro­
duce a strain matrix rj by the formula 

(2.4) v = (p*py<> - l . 

This matrix exists since the square root of p*p can be taken because 
p*p is symmetric and positive. Upon comparison with (2.3) it is seen 
that the stationary values of e (when dx is varied) are the eigenvalues 
of rj. These elongations are called the principal elongations. 

In the greater part of the literature it is customary to take as a 
measure of the strain not the actual differences of length of line ele­
ments, but rather the differences of their squares, and thus to take 
as the strain matrix the following expression: 

(2.4)' v = y(^-l). 

The factor 1/2 in this formula has as a result that for small strains, 
both (2.4) and (2.4)' lead to identical formulations. The great bulk 
of the literature deals with the case of small strains and hence it is 
then a matter of indifference which definition for q is chosen. In 
spite of the occurrence of the square root in (2.4), this definition of 
the strain matrix is sometimes more convenient than that given by 
(2.4)'. 

I turn next to the notion of stress a t a point. This notion was intro­
duced in its full generality by Cauchy. One considers an element of 
area dS with a definitely defined unit normal with components £» in 
the original undeformed position and their images dS and £» in the 
deformed position. In the deformed position it is assumed that a force 
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is exerted across the surface area due to the action of the material on 
one side of that surface on the material on the other side. The total 
force across the element of area dS can be expressed by the formula 

(2.5) ViklkdS, i = 1, 2, 3, 

in which a summation on k is implied. The quantities (Tik form a sym­
metric matrix called the stress matrix. I t was shown by Cauchy that 
this matrix does indeed yield the stress distribution at a point in 
accordance with (2.5). The proof requires the use of Newton's laws 
and involves a passage to the limit in which dS is shrunk down on a 
point. I t has been known for a long time that the quantities aik form 
a tensor in the sense of the definition of tensors with respect to their 
invariant properties under coordinate transformations. As the word 
tensor itself proves, the stress tensor was the prototype of all tensors 
—thus pointing out a debt which mathematics generally owes to 
continuum mechanics. 

The next step in the development of continuum mechanics con­
sists in deriving the equations of motion. These are simply the expres­
sion of Newton's law, together with the assumed existence of a tensor 
stress field c^ which is differentiable. These equations, the expression 
of the law of conservation of momentum, are 

d2X{ d(Tik 
(2.6) p = Fi + , i = 1, 2, 3. 

dt2 dX/c 
Here p represents the mass per unit volume in the deformed position 
fixed by £», and the quantities Fi represent the external forces per 
unit volume (which arise through immersion of the body in a field of 
force such as gravity). The summation convention on the repeated 
index k is again to be observed. The law of conservation of angular 
momentum is not written down: it, in fact, leads simply to the sym­
metry of the stress tensor, as Cauchy showed. Since Newton's laws 
are of necessity formulated with respect to the instantaneous position 
of a particle, it is inevitable that the force resulting from the space 
gradients of the stress tensor field must be computed in the deformed 
position and hence this requires that partial derivatives with respect 
to the variables Xi must be taken. These last are, on the other hand, 
clearly unknown functions to be determined in general as part of the 
solution of a specific problem. This is one of the main reasons why the 
Lagrange variables employed here are avoided in the great bulk of 
the literature in continuum mechanics. However, in elasticity, as we 
shall see shortly, this difficulty is not fatal—in fact, the theory em­
ploying the Lagrange variables is rather natural in this field. 
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We have now in our possession the main elements of the general 
mechanics of continuous media. We owe it in the main to Cauchy, 
although the way had been prepared by the Bernoullis and Euler. 
Little more can be done without making hypotheses about the medi­
um. In fact, the equations (2.6) are only three in number, but they 
contain ten unknown functions, in general, if the body force com­
ponents Fi are regarded as given: the density p, the three coordinates 
Xi denning the position of the system, and the six components <Sik — <Tki 
of the stress tensor. Thus more relations are needed, and these arise 
by way of mathematical formulations based on the assumed physical 
properties of the various types of media. 

For example, one of the simpler cases from this point of view is 
furnished by what is called a perfect incompressible fluid. The word 
"perfect" in this connection refers to the nonexistence of viscosity, 
and this in turn is interpreted to mean that no shear stresses can 
occur; as a result the stress matrix cr^ is given by — <rl, i.e. it is a 
diagonal matrix with —a as the common scalar value of its elements. 
The quantity a is called the pressure in the fluid. The stress field thus 
reduces to a scalar field, and equations (2.6) then contain only four 
unknown functions, i.e. the functions %i and o-, since p=p. The condi­
tion of incompressibility is formulated in the obvious way by requir­
ing the determinant of the Jacobian matrix pik to have the value 
unity ; thus a fourth equation is made available. These equations to­
gether with appropriate initial conditions (which fix the position and 
velocity of all particles at the time £ = 0) and boundary conditions 
would constitute a fully formulated problem in mechanics. 

Another possibility is that furnished by elastic solids. In this case 
the hypothesis could reasonably be made that the stress components 
(Tik a t a point are given functions of the elements v\ik=f)ki of the strain 
matrix rj defined by (2.4), which in its turn is a given function of the 
unknown first derivatives of the coordinates %i in the deformed posi­
tion. These relations could be substituted into (2.6) in place of the 
functions cr^, with the result that the three equations would involve 
only the three unknown quantities #». Again, appropriate initial and 
boundary conditions would arise from special physical conditions 
which might be imposed—for example, the whole boundary of the 
solid might be prescribed to be held fixed. 

I t requires very little experience with problems involving partial 
differential equations to realize that the two kinds of problems in 
mechanics which we have just outlined lead to mathematical prob­
lems of very great difficulty and complexity. However, solutions of 
them—and of many others of far greater difficulty in continuum 
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mechanics—are very much desired in practice since the physical theo­
ries of which they are the mathematical formulations have been 
known for a century or more to be capable of mirroring the phenom­
ena of nature with good accuracy in many highly important special 
cases. Thus mathematical techniques for their solution are wanted, 
since that would make largely unnecessary a great deal of expensive 
and inefficient experimentation and trial and error methods. 

I t is perhaps not superfluous to say what is meant by "solutions" 
of our problems, and what that implies. From a strictly mathematical 
point of view it could be regarded as sufficient to establish, if possible, 
the existence of functions â»-(xi, #2, x%, t), cr^(xi, x% X3, t), etc. which 
have derivatives of a certain order and which satisfy all of the differ­
ential equations and boundary and initial conditions identically. One 
would also like to know whether or not such a solution is uniquely 
determined. I t seems highly probable that the specialists in mechan­
ics have on the whole formulated their problems in such a sensible 
fashion, and with such correct instincts, that the solutions do exist in 
this sense, but rigorous proofs of such plausible conjectures are alto­
gether lacking for problems formulated in the generality indicated 
above by way of example in the cases of perfect fluids and perfectly 
elastic bodies. One has a few such proofs only for very special and 
relatively simple cases. As an indication of how this matter stands, I 
point out that the Dirichlet problem and Plateau's problem, both of 
which occur as particularly simple problems in elasticity, have been 
solved in the sense indicated here, but only after long struggles and 
great efforts on the part of some of the best mathematicians of our 
time, who also were forced in the process of doing so to invent en­
tirely new methods of analysis which in their turn resulted in new 
and flourishing branches of mathematics of a pronouncedly abstract 
character. And yet, these two problems are rather easy when com­
pared with those in view here. 

The problem of proving the uniqueness of the solutions of our 
mathematical problems is also not easy to solve, even when it happens 
to be true, which is often simply not the case. In fact, it is my inten­
tion in this lecture to deal largely with problems in which the non-
uniqueness of certain types of solutions is one of the central points 
of interest. 

For practical purposes one wants more than the assurance that the 
mathematical problem is not made nonsensical by reason of a formu­
lation which is contradictory because no solution of it exists. What 
one wants and needs in practice is a representation of the solution, as 
explicit as possible, which is in such a form that not only its depend-
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ence on the independent variables x» and t is effectively obtained, but 
also is such that its dependence on all relevant physical parameters 
over their appropriate ranges can be read off. This is a very large 
order. All of the resources of mathematical analysis as we know it, 
intricate, subtle, varied and complicated though they are, are puny 
and quite insufficient to cope with such problems in their full general­
ity. I hasten to add, however, that the practitioners in the field have, 
nevertheless, accomplished great things by narrowing the formula­
tions, making a host of tactful simplifying assumptions, restricting 
the physical parameters to very small values (or, on occasion, to very 
large values), and then attacking the problems with the whole artil­
lery provided by mathematical analysis. Some idea of what I mean 
will, I hope, come out in the course of my discussion later on of prob­
lems in a small part of the general field of continuum mechanics. 

There is an important aspect of these last matters which deserves 
at least a mention here. I refer to the existence of high speed digital 
computing machines and the constant development of new and ever 
faster ones, which, according to a widespread and quite erroneous im­
pression, should make it possible to solve numerically the problems of 
continuum mechanics and thus make the observations of the preced­
ing paragraph needlessly pessimistic. J. von Neumann, who was the 
pioneer in the development of this kind of computing equipment, did 
so with the object of solving numerically certain types of problems 
in continuum mechanics, and he was extraordinarily successful in 
that enterprise. We have at our disposal now, to a large degree be­
cause of his efforts, computing equipment which allows us to attack 
successfully problems which only a few years ago would have been 
regarded as hopelessly difficult. However, the problems solvable in 
this fashion are, again, relatively simple problems. For example, if 
the problem depends on more than two independent variables 
(xi, #2, Xz) say, or (xi, #2, i) (not to mention the most general case 
(xi, X2, X3, /)), then it is highly unlikely that its solution could be 
approximated numerically by the best and fastest available comput­
ing equipment—partly because present methods would require for­
mulations involving nets of points in three or four dimensional space. 
But it would be a mistake to think that the main difficulty lies in the 
capacity, or rather lack of capacity, of machines to perform calcula­
tions with lightning speed, to have a prodigious memory in which to 
store needed numbers, routines, etc. The difficulties lie rather in the 
domain of human capabilities. In the use of machines for solving 
problems of the type under discussion here, i.e. complex nonlinear 
problems formulated in terms of partial differential equations, it is 
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absolutely vital to master first of all the underlying mathematical 
theory of such problems, and then on that as a basis to derive a nu­
merical scheme that will effectively yield an accurate approximation 
to their solution. In fact, a new and important branch of analysis 
called numerical analysis has resulted from these needs. 

3. Elasticity. In the preceding section it was pointed out that the 
general formulations of continuum mechanics are incomplete until 
relations arising from physical hypotheses about the medium are 
introduced. In the case of elastic solids it was observed that these 
could take the form of six explicitly given equations for the stresses 
(Tik as functions of the strains r?»*., and such relations should character­
ize the medium physically. This is the course followed in the classical 
linear theory of elasticity, in which these relations are all taken to be 
linear and homogeneous equations connecting stress and strain, on 
the basis of the assumption that the strains are all infinitesimals of 
first order. In this lecture, however, it is not appropriate to make such 
a special assumption, and it is then preferable to formulate the gen­
eral theory in a different way. 

The theory goes back basically to Kirchoff, according to C. Trues­
dell, and its main assumption is that the elastic properties of a given 
material can be described adequately by assuming that a strain 
energy density function exists which depends only upon the strains 
induced by a given deformation. Most of the more recent writers in 
the field make use of this hypothesis.1 The general custom is to de­
velop the theory in an invariant manner by making use of the tensor 
notation, which leads to a rather bewildering maze of formulas and 
a thicket of subscripts and superscripts. The mathematical formula­
tion followed in this lecture is essentially that of Murnaghan [27], 
who bases his treatment of the theory of matrices, and also works in 
principle with the Lagrange variables; he thereby simplifies the for­
mal aspects of the theory quite materially, in my opinion, and at the 
same time presents them very clearly and concisely. 

The basic assumption of this form of the theory of elastic solids 
is that there exists a strain energy density function 'UO?), defined with 
respect to the undeformed and unstrained stage of the elastic body, 
which, as indicated above, depends only upon the strain matrix 77 of 
the deformation. Of course, the elements of 77 are, in their turn, func-

1 The theory is derived and treated a t length in the book by Green and Zerna 
[ l3] . For a history and bibliography of the literature, which is very extensive, the 
papers [42] and [43] by C. Truesdell should be consulted. Particularly relevant for 
the present lecture are papers by Biot [2; 3] , Kappus [20], Rivlin [35], Reissner [33], 
Trefrtz [40 ], the classic book of Love [25], and the book of Novozhilov [28]. 



i962] SOME OBSERVATIONS ON CONTINUUM MECHANICS 247 

tions of the elements of the Jacobian matrix p of the deformation. 
All relevant physical properties of the elastic solid are supposed to 
have their appropriate formulation in this function. Thus we have 

(3.1) 01= «Ufa) s %(Vik). 

I t is assumed next that the rate dW/dt at which work is done on the 
body by the body forces Fi and the stresses applied at its boundaries 
is equal to the rate of change dK/dt of the kinetic energy plus the 
rate of change {d/dt)JJJK%d V of the strain energy of the body : 

dW 
— 

dt 

dK d 

+ — dt dt 
(3.2) — - = — - + — <MV. fff: 
Here R represents the domain occupied by the unstrained body. The 
variational principle of virtual work is then applied in order to obtain 
both the equations of motion and the various possible types of bound­
ary conditions which are permissible. In doing so, it is of advantage 
to introduce a new set of functions g»>(rç) which are defined by the 
equations 

dOlM 
(3.3) qir(ij) = — 

dpir 

These functions are, as we shall see in a moment, quantities which 
are of the nature of stresses, but unlike the stresses Ö\/C, which are 
defined in the deformed position of the body, they are evidently 
defined in the undeformed position, i.e. with respect to the Lagrange 
coordinates. Also, the matrix <? = (#»>) is not usually symmetric. The 
variational methods now lead in standard fashion to the following 
equations of motion : 

1 doir d2x 
(3'4) I 7 r ^ + * - > * - • i _1'2'3' 
and these equations have the advantage, as compared with (2.6), 
that no derivatives with respect to the dependent variables a?< occur. 
By the symbol \p\ we mean the Jacobian determinant \pik\. We 
recall that a summation on the index r is implied in (3.4). We see also 
that the terms in (2.6) involving the stresses <r# are replaced in (3.4) 
by terms involving the "Lagrange" stresses g^. In applying the varia­
tional principle it is, as usual, necessary to restrict the variations to 
those which are compatible with any geometrical constraints that 
might be prescribed at the boundary of the solid. If no such con­
straints are imposed, then so-called natural boundary conditions 
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arise, and these take the form of conditions involving the stresses at 
the boundaries. One form of these conditions turns out to be the fol­
lowing:2 

1 1 
(3.5) <Tik = - j—r qtrpkr = - ;—r qp*. 

\P\ \P\ 
As one sees, these are relations between the stresses <Xik and the func­
tions pik which determine the strains. They are, in fact, a replacement 
for the stress-strain relations of the classical theory. The fact that 
they were derived as boundary conditions is not important in this 
connection : any subdivision of the original body could be considered 
just as well as the whole in applying the variational principle. An 
equivalent formulation of (3.5) is the following: 

(3.6) QirZrdS = CTiklkdS, 

in which £* and dS, £ and dS represent the unit normals and the ele­
ments of area in the original and the deformed positions. The condi­
tions (3.6) are useful in practice in formulating the boundary condi­
tions—for example, an unstressed portion of the boundary is char­
acterized by <F»-jfcefe = 0, and hence g»r£r = 0 on its pre-image; thus a 
boundary condition is obtained for a free boundary, but with respect 
to the undeformed position, and this is a great advantage in such 
cases. 

This is so far an extremely general theory. We now specialize 
quite drastically by assuming the solid to be isotropic, that is, that 
its properties are not dependent on direction at any point, and that 
it is also homogeneous, i.e. its elastic properties are the same at all 
points. I t follows that the function 01(77) must depend only on invari­
ants of the strain matrix 77 (which might be formulated either by 
(2.4) or (2.4)') with respect to orthogonal coordinate transformations, 
and these are, of course, the coefficients of the cubic equation which 
determines the eigenvalues of the strain matrix rj. In his work Mur-
naghan assumed the strain energy density to be developable in powers 
of these invariants, and he investigated in a number of cases (for 
example, in cases of constant stress, or of strains given as linear func­
tions of the coordinates) what conclusions might be drawn by taking 
a few terms in such a series, with coefficients to be determined from 
experiments, upon extrapolation to pressures so high as to be beyond 
the range of experimentation. 

2 This relation can be rather more directly obtained by equating the work done 
by the stresses on a volume element to the change in strain energy which arises from 
an arbitrary variation in the displacements. 
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Here, for the sake of concreteness, we might introduce for the 
strain energy density the expression : 

(3.7) CH = Y H 2 + MM 

with 7] the matrix given by (2.4) or (2.4)', and with the symbol [A] 
meaning the trace of the matrix A. Since the body is supposed to be 
homogeneous it follows that X and \x are constants for a given material, 
presumably with values which would differ depending upon which of 
the two definitions is taken for the strain matrix r?. The constants X 
and ix might be called the Lamé constants, since (3.7) reduces to one 
of the standard formulas for the strain energy in the classical linear 
theory of elasticity. Figuring in (3.7) are, evidently, the linear in­
variant [17] and the quadratic invariant [r?2] of the matrix 7?; the cubic 
invariant 177 j , which could occur, is not employed here. The function 
defined by (3.7) reduces, as I have said, to the form used in the classi­
cal linear theory of elasticity when it is assumed that the strains and 
deformations are very small. In what follows, however, it is no tâ t all 
essential to suppose that ^ has the special form given in (3.7). 

With the introduction of a specific strain energy density function, 
the theory of elasticity can now be said to be complete. 

So far, I have supposed that the states considered were time de­
pendent, since that causes little or no complication in outlining the 
basic theory. From now on, however, I concentrate on equilibrium 
states with no body forces present. In that case, the equations of 
motion (3.4) simplify greatly; they become, in fact 

duik 
(3.8) — - 0, i = 1, 2, 3. 

dxk 

This is a set of three equations for the nine functions #»•&, since the 
matrix qik is, in general, not a symmetric matrix. To this, however, 
one may add the nine defining equations (3.3) for these quantities. 
We would therefore have twelve equations for the nine functions q%r 

plus the three functions #t-, and thus twelve equations for the twelve 
unknown functions; or, one could, in principle, replace the functions 
qir in the set of equations (3.8) in terms of the functions rjir which, in 
turn, are given in terms of first derivatives of the displacements X{. 
In that way, a system of three nonlinear partial differential equations 
of second order for the functions öti would be obtained. To these equa­
tions must be added appropriate boundary conditions which might 
be expressed in terms of stress, or of displacement, or both. The 
analytical problem of determining functions qik and Xi which satisfy 
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the differential equations and appropriate boundary conditions is, as 
has already been said, an extremely difficult, complex problem in 
spite of the extreme simplicity of the equations (3.8) in outward 
appearance. Such problems are very difficult even if one is prepared 
to be contented with a numerical approximation. 

What then is one to do ? The answer is rather obvious : it becomes 
necessary to take advantage of possibilities which may result through 
simplifying and specializing the physical problems; for example, the 
vast bulk of the literature in the field of elasticity is in the domain of 
the classical linear theory of elasticity, which results when one as­
sumes that the strains as well as the deformations are small. The 
equilibrium problems then become linear problems for elliptic partial 
differential equations. Of this theory I do not want to speak here. In 
fact, I have already said that I intend to deal mainly with problems 
concerning the stability of an elastic solid in equilibrium, and these 
are problems which are, in principle, not linear. 

4. Stability of thin solids under pressure. The prototype of all 
problems in elastic stability is the problem of buckling of a long 
slender elastic column or rod under compressive forces a t its ends and 
along its axis. This problem was treated some two hundred years 
ago by Euler. The physical occurrence is quite easy to explain and 
to understand. Obviously, if the column is long and slender, the 
straight unbent state of it will not remain stable if the end compres­
sion is made too large: that is clear to everyone's physical sense. 
What happens is for our purposes perhaps most clearly explained 
schematically by considering how the maximum deflection wm&x de­
pends on the end thrust F (cf. Figure 4.1). For F sufficiently small, 

X -——*»F 

FIGURE 4.1. Bifurcation phenomena. 
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nothing happens, wm&1!i is zero, and the straight state is the only equi­
librium state. At a certain critical value Fc of F, however, the straight 
state ceases to be the only possible equilibrium state and a bifurcation 
of the solution of the equilibrium problem takes place ; the bent state 
is then the stable state of equilibrium. This is truly a bifurcation 
phenomemon in the sense meant by Poincaré; that is, w is a function 
w(x, F) of both the independent variable x and of the load parameter 
F such that when F attains the critical value new types of solutions 
of the equilibrium problem appear in the neighborhood of the unbent 
state which co-exist for the same values of the physical parameters. 
Quite generally, when I speak here about instabilities, it is this type 
of phenomenon that I have in mind, namely the coexistence of more 
than one equilibrium state in an arbitrary neighborhood of some given 
state. Of course, many of you are familiar with what is really true in 
the present case, i.e. that there are infinitely many critical values 
and correspondingly many different buckled shapes or modes of the 
column. In fact, this problem of the determination of the critical 
loads and buckling modes is, I believe, historically the first example 
of a linear eigenvalue problem associated with a boundary value 
problem for differential equations. The differential equation is 
d2w/dx2+\w = Q, with w(0)=w(J) = 0 as boundary conditions and 
with X proportional to the square root of the axial force F: it is, as 
one sees, indeed the prototype of all eigenvalue problems associated 
with differential equations. 

I t can now be made obvious why it is that the theory of elastic 
stability cannot belong to the classical linear theory of elasticity, 
since the boundary value problems of that theory, when properly 
formulated, have uniquely determined solutions and here, obviously, 
that is just not the case. I t is true, as I have already said, that the 
critical buckling values of the axial load JF are determined as the 
eigenvalues of a linear problem; however, this comes about through a 
perturbation procedure as applied to a basically nonlinear formula­
tion of the relevant problem in elasticity. 

The Euler theory for the buckling of a thin rod is not a theory 
which can be obtained directly from the basic nonlinear theory of 
elasticity which was formulated earlier. Instead, it results by making 
a lengthy series of assumptions regarding the elastic behavior of a 
body with a very special property, namely that one of its dimensions 
is large compared with the other two. Until recently, the entire theory 
of elastic stability was confined to cases of this sort, namely to thin-
walled solids, such as thin columns, thin plates, and thin shells, and 
mathematical theories have been derived for these cases which are 
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based not on a specialization of an underlying nonlinear three-dimen­
sional theory, but rather on hypotheses regarding what seems likely 
to happen through the thin wall of the solid. 

I proceed to formulate one of the best known and most used of 
these theories, namely the thin plate theory which is due to Föppl 
and von Kârmân [21 ]. This theory leads to the following pair of 
nonlinear partial differential equations: 

(4.1) (yh)2AAw = — (<t>yywxx - 2</>xywxv + <t>xxwvy), 

2 

(4.2) AA<t> = (WXXWyy — WXy). 

We have here two partial differential equations of fourth order, each 
involving the biharmonic operator (the repeated Laplacian, that is), 
and with coupling through quadratic terms in second derivatives of 
two dependent functions w{x1 y) and <t>(x, y) which, with the addition 
of boundary conditions, serve to formulate the problem of buckling 
of plates under compression along the boundary. The function w(x, y) 
represents the vertical deflection of the plate (cf. Figure 4.2), while 
$(x, y) is called the Airy stress function, from which the so-called 
membrane stresses (they are, in fact, average stresses over the thick­
ness) are derived by differentiation in accordance with the following 
equations : 

d20 d2<t> d2<t> 
(4. 3) (TXx — > CTxy '==i ; <Tyy 7=z * 

dy2 dxdy dx2 

(Actually, these are dimensionless stresses obtained by dividing the 
actual stresses by Young's modulus.) Thus the originally three-
dimensional problem is made to depend on only two of the coordi­
nates, or, as one might also put it, the behavior of the plate is referred 
to its middle surface. 

I t has no very great point to discuss here in any detail the fairly 
complicated physical and geometrical hypotheses which lead to the 
differential equations (4.1) and (4.2). One of the hypotheses, however, 
deserves mention because of its relation to a matter of importance 
to be discussed in the next section. I t refers to the strain components 
Vn or rj22 or, in the x, y, z coordinate system of Figure 4.2, the com­
ponents rjxx or rjyV. In the classical theory in which the strains are de­
fined by (2.4)' one has for rjxx, for example, the following formula: 

1 2 2 2 

(4.4) rjxx = u* + — (Uz + vx + wx), 

when u, v, w represent the displacements, i.e. the differences x~~xy 
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FIGURE 4.2. Buckling of a thin plate. 

y — y,z — zoî the coordinates of the points of the solid in the original 
and deformed positions. One of the key assumptions of the Föppl-
von Karman theory is that the plate, because of its thinness, might 
be expected to admit of a vertical displacement which is of a higher 
order of magnitude than the horizontal displacements, without at the 
same time violating another of the important assumptions, i.e. that 
the strains should remain small. Thus (4.4) is simplified very greatly 
by dropping the terms u* and v\, but retaining the term v?x\ i.e. the 
strain component rjxx is assumed to be given approximately by 

(4.5) 4- * 2 
rjXx = ux H wx 

This nonlinear relation is the source of the nonlinearities in the equa­
tion (4.2), and it is in a way the key assumption of the theory. More 
will be said later about the relation between (4.4) and (4.S). 

While it is true that these differential equations represent a very 
great simplification by comparison with the general three-dimen­
sional nonlinear theory—after all, there are only two independent 
variables and two dependent variables left—nevertheless, it should 
be quite obvious that the boundary value problems which remain to 
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be solved are very formidable problems indeed. (One gets an idea, 
then, of the complexity to be expected in the general nonlinear theory 
if it were to be formulated in extenso in differential equations.) They 
are such that nothing very much of a general nature can be done; for 
example, solutions given explicitly by series or by integral representa­
tions are more or less out of the question. Once more, simplifications 
are in order, if it is desired to discuss any concrete problems ana­
lytically. 

One of the favorite ways of formulating attackable problems in 
mathematical physics will now be employed, namely the device of 
assuming the problem to have certain symmetries. In this case, it is 
fruitful to suppose that one is dealing with a circular plate which is 
bent into a form with symmetry with respect to the center, and hence 
such that the dependent functions can be supposed to depend only 
upon the radius r (see Figure 4.3). I t is convenient to introduce two 
new dependent functions q(r) and a{r) defined in terms of w and <j> by 
the equations 

R 
(4.6) q(r) = wr, 

r 
1 

(4.7) a(f) = 4h, 
r 

in which wr and <j>r denote derivatives with respect to r. Evidently 
q(r) measures the radial slope of the plate. The function <r(r) is the 
radial stress, the so-called radial "membrane" stress, indicated in 
Figure 4.3. In terms of these quantities the differential equations 

0 
FIGURE 4.3. The circular plate. 
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(4.1) and (4.2) can be very much simplified and reduced in order; the 
differential equations become, in fact: 

(4.8) G < r _ _ g » = 0 , 

(4.9) K2Gq + aq=0, 

in terms of the linear differential operator G defined by 

d / d 
(4.10) G( ) = R2r~* — ( r 3 — ( ) 

dr \ dr 
with K = rh/R a parameter involving the material constant 7 and the 
ratio h/R of thickness to radius of the plate. To these differential 
equations we add the following boundary conditions: 

(4.11) <rr = qr = 0 at r = 0, 

(4.12) o- = â > 0, Rqr + (1 + v)q = 0 at r = R. 

The conditions (4.11) are conditions of regularity at the center r = 0 
of the plate which are appropriate since G is singular there. The first 
condition in (4.12) states that the edge compressive stress is â (and 
counted positive when it is a compression), while the second condition 
corresponds to the assumption that no constraint is imposed at the 
edge to inhibit turning of the plate about the tangent; or, expressed 
in a different way, one says that the plate is simply supported there. 
The mathematical problem to be solved is then to determine func­
tions a(r, â), q(r> a) which satisfy the equations (4.18) to (4.12) for 
all values of the applied compressive force â at the boundary, i.e. for 
0 ^ £ < o o . 

This is a problem which was solved some twenty years ago by 
K. O. Friedrichs and the speaker [ l0] . I t is possible to explain here 
how that was done only in very general terms. For values of â not too 
large it was found that the solution could be obtained by means of 
power series in the independent variable r, and this was supplemented 
by an asymptotic development with respect to large values of cr. 
Fortunately, it happened that the two forms of the solution over­
lapped. I might remark that Friedrichs and I spent practically all of 
our spare time on numerical computation for a year or more in order 
to obtain actual numerical solutions over the whole parameter range, 
since only desk computers were available at that time. It is perhaps 
a measure of the progress that has been made in this area to observe 
that this same problem was attacked recently in our Institute with a 
modern digital computer ; it proved to be more or less a triviality for 

• 
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such a machine since very accurate results were obtained in a matter 
of minutes. 

I want next to describe briefly the results which were found for the 
problem formulated above, since they are characteristic for this type 
of problem, and they have general connotations. To begin with, the 
whole matter is of much the same sort as was described for the case 
of Euler's column problem. The boundary value problem just now 
formulated has as one of its solutions the solution a^â; q^O, which 
means that the plate remains plane and in a state of uniform com­
pression—no buckling occurs. This clearly satisfies the differential 
equations as well as the boundary conditions. Critical values for the 
boundary pressure <r a t which other solutions appear can be obtained 
here also by solving a linear eigenvalue problem. For that purpose 
one supposes q to be small, say of first order, while a is supposed to 
be given by <r plus a small term of first order. These assumed solutions 
are inserted in the differential equations, and it is evidently natural 
to ignore q2 in the first equation and to replace a in the second equa­
tion by â. This latter equation then is a linear homogeneous equation 
for g, which in conjunction with the linear homogeneous boundary 
condition given in (4.12) poses a linear eigenvalue problem with â as 
parameter. One then asks the question whether values of d exist such 
that nonidentically vanishing solutions q(r) arise. There exists a 
whole spectrum of such values; in fact, we have here a particular case 
of the classical Sturm-Liouville eigenvalue problem with an infinite 
discrete spectrum and corresponding eigenfunctions (they are Bessel 
functions), each one of which yields a possible mode of buckling. 

Since the linear buckling problem is homogeneous, it follows that 
the buckling modes are not determined in amplitude, but only within 
an arbitrary constant multiplying factor. In order to determine de­
flections and stresses after buckling occurs, it is then necessary to 
integrate the nonlinear differential equations. As I have said, we did 
that in the sense that we followed the first branch of the bifurcation 
curve (that is, the branch that goes out from the lowest critical 
buckling value,3 see Figure 4.1 with F and Fc replaced by a and <rc), 
and indeed for the whole possible range 0 ^ <r < <*> of the applied com­
pressive load. 

I t is of interest to describe briefly the results we obtained for some 

8 In his doctoral thesis W. Koiter [22] has studied in detail the nature of the bi­
furcation curves in the neighborhood of a bifurcation point in a variety of cases 
concerning thin curved shells; in these cases the phenomena are a good deal more 
complicated than they are in the present case. 



i96a] SOME OBSERVATIONS ON CONTINUUM MECHANICS 257 

of the quantities. For example, I show a curve (see Figure 4.4) for 
the radial compression a a t the center r = 0 of the plate as a function 
of the pressure <r applied at the edge, all other parameters being held 
fixed. As one sees, an increase in the normal pressure at the edge re­
sults after buckling in a decrease in the value of the radial stress at 
the center of the plate. The reason for that can be understood by an 

l .Or 

- 1 . 0 } -

-1.5f-

FIGURE 4.4. Radial membrane stress a t center. 

appeal to differential geometry. If a plane surface is held fixed at its 
edges but is then deflected out of the plane it will in general be 
stretched. In the present case, the stretching of the plate due to its 
bulging out after buckling results in tensile strains in the plate and, 
consequently, to a partial relief of the original compressive stress in 
the flat plate. As the curve indicates, this process goes so far that it 
eventually, under sufficiently high pressure at the edge, leads to a 
change in the sign of the radial stress, which means that it goes over 
into a tension. When we first obtained this result we thought we 
must have made a mistake, since at first sight it seemed hard to be­
lieve. However, the solution of the mathematical problem has this 
property (and such a behavior of buckled plates is also well known 
experimentally). I might add that in any event rigorous proofs of this 
and of other statements of mathematical character that are made be­
low are contained in the paper cited above. 

I t will be observed that the curve for the radial stress a t the center 
has a horizontal asymptote. This asymptotic value was determined by 
calculation from an appropriate asymptotic theory. Before saying 
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FIGURE 4.5. Radial membrane stress. 

more about that , however, I show another set of curves (see Figure 
4.5). These curves represent the behavior of the radial stress, but this 
time as a function of the radius, and various curves are given for 
different values <r/<rc of the ratio of the applied pressure at the edge 
to the lowest critical pressure. Since, as we have already seen, the 
stress at the center changes its sign as the compression at the edge 
increases—that is, it goes over into a tension—it is not surprising 
that the curves for or as a function of r have the general form shown 
on the figure, in the sense that the part of the plate over which this 
stress is a tension gradually spreads outward from the center towards 
the edge as â increases. The curves indicate, however, much more 
than that , namely that this stress seems to be tending to a constant 
negative value in the inner part of the plate and then to change 
rapidly near the edge of the plate to the prescribed positive value at 
the boundary. In fact, the limit situation is one in which the entire 
interior of the plate is in a state of constant tension, with a discon­
tinuous change from that negative value in the interior to the pre­
scribed positive value at the boundary. All physical quantities change 
in this way, in fact, i.e. all of them tend to be constant in the interior 
of the plate and to change very rapidly in a narrow strip or boundary 
layer near the edge of the plate. I t was this conception of the behavior 
of the solution of the nonlinear boundary value problem, obtained as 
the result of numerical computation, which led to the proper formu-
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lation and to the solution of the asymptotic problem appropriate for 
<r very large. 

I t is indeed a typical boundary layer phenomenon which is involved 
here, and the mathematical reason for its occurrence is seen by exam­
ining the differential equations. Consider first the differential equa­
tion (4.9) for q. In it we expect a to become large since it is so pre­
scribed at the boundary; thus, one might expect in the limit that the 
first term of (4.9) could be ignored compared to it. Perhaps a better 
way to put it would be to say that the limit state characterized by 
letting â become infinite while other parameters are held fixed could 
be characterized just as well by holding a fixed but allowing the thick­
ness of the plate to approach zero. In the latter case, as one sees, the 
parameter K would tend to zero and thus in this way also one sees 
that the limit equation resulting from (4.9) should be pq~0, from 
which we conclude that g = 0. But if q^O, it is readily seen that the 
only solution of the equation (4.8) for a which is regular at the center 
is a = const. Thus we would have indeed in the interior of the plate 
the limit state g^O, that is, the plate would become flat, and also 
<r would be a constant. Both of these expectations were borne out by 
the numerical computations. However, it would evidently be wrong 
to take as the constant value of a its value a a t the boundary, since 
we know that the limit value for this quantity in the interior of the 
plate is negative, not positive. To find the proper limit value of a 
in the interior as well as the limit values of all other quantities it is 
necessary to consider what happens in the boundary layer in the 
vicinity of the edge of the plate. 

Such boundary layer phenomena are not confined to the sort of 
problem considered here. In fact, the first such problem to be formu­
lated and solved was the famous boundary layer problem of Prandtl 
[31 ] which arises in dealing with the flow of a fluid with small viscos­
ity v along a rigid boundary : here also the limit solution for v—*0 in 
the interior of the fluid is obtained by working with the differential 
equations for v = 0, but it is necessary to analyze what happens in a 
narrow strip adjacent to the boundary in order to obtain limit values 
for all of the essential quantities. E. Reissner [34] has recently un­
covered an interesting case in the theory of thin elastic shells which 
gives rise to a boundary layer within a boundary layer. Boundary 
layer phenomena for thin plates in cases other than that of the cir­
cular plate have been treated by Fife [7]. 

All such boundary layer problems have a common feature: the 
differential equations are decreased in order when a certain parameter 
takes on its limit value (in the buckling problem described here the 
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order of the system is reduced from four to two when K = 0 ) . AS 
a consequence, the solution of the limit problem cannot in general 
be expected to satisfy all of the boundary conditions prescribed 
for the original problem; thus, as in the case described here, the 
solution of the boundary value problem does not converge uni­
formly at the boundary when the parameter tends to its limit value. 
One way to resolve this difficulty is to introduce a new independent 
variable and also new dependent variables which depend on the 
parameter in such a fashion that the differential equations in the new 
variables do not degenerate in order in the limit, and lead to a repre­
sentation which does converge uniformly at the boundary. This de­
vice for obtaining asymptotic representations in degenerate cases is 
one of many types of asymptotic procedures discussed by Friedrichs 
[9] in his Gibbs lecture some years ago. 

In closing this section it is perhaps of interest to mention two sta­
bility problems concerned with the thin circular plate which differ 
from the one just treated. The first deals with the simply supported 
circular plate which is bent by uniform normal pressure on its upper 
face so that its mean surface becomes a surface of revolution. Since 
the circumference of the plate shrinks in this process, it follows that 
circumferential compressive stresses (called sometimes hoop stresses) 
develop near the boundary and it is reasonable to ask whether such 
stresses might not for high enough loads lead to the instability of the 
symmetric bent form if nonsymmetric variations are permitted. This 
turns out to be true, as has been shown by Yanowitch [45], who 
makes use of the asymptotic solution of the bending problem obtained 
by Bromberg [4]. A similar question, but for the symmetric buckled 
states of the plate considered above, has also been answered in the 
affirmative by Yanowitch—again this comes about because of the 
development of large compressive hoop stresses near the boundary. 
Thus the symmetric buckled states of the circular plate may buckle 
again if the pressure is large enough and the constraint implied in the 
assumption of symmetry is relaxed. 

5. The stability of thick solids under pressure. I have already said 
that the theory of thin plates as embodied in the differential equations 
of Föppl and von Karman is not a theory obtained by direct special­
ization of a general nonlinear three-dimensional theory. Instead, it 
results by making a considerable number of special assumptions, the 
validity of which has never been proved. There is no doubt that this 
approximate theory has validity in some appropriate mathematical 
sense. I t is, I believe, the lowest order approximation in a develop­
ment with respect to the thickness of the plate as a small parameter. 
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However, such a development is certainly not a convergent but 
rather an asymptotic development, simply because of the fact that 
the lowest order approximation involves differential equations which 
have an order smaller than that of the original differential equations, 
so that boundary conditions are lost and hence the solution of the 
basic three-dimensional problem in its dependence on the thickness 
as parameter will not in general converge uniformly at the boundaries 
when the thickness tends to zero. In other words, the situation is like 
that of the limit case of the circular plate discussed above, only that 
now it is the Föppl-von Karman equations themselves which would 
be the degenerate limit differential equations. 

Formal developments with respect to the thickness of thin plates 
have been obtained, for example, by Chien [ó], Synge and Chien 
[39] and, more recently, by Fritz John [19]. Synge and Chien pro­
ceed by making formal developments in powers of the thickness, 
John by assuming double power series with respect to both the thick­
ness and the coordinate in the direction of the thickness. Both pro­
cedures lead to a variety of different sorts of approximate theories, 
depending upon the number of zero coefficients that are assumed at 
the beginning of the series for the various dependent quantities; 
among them is the theory of Föppl and von Kârmân, the elastica 
theory of Euler, the so-called membrane theory of shells, and others. 
There is a challenging problem here : to prove that these approximate 
theories really are correct in the sense that the terms neglected are 
all of an order in the thickness higher than those retained. This prob­
lem would appear to me, however, to be one of very great difficulty. 

Although no rigorous justification of such theories as Euler's elas­
tica theory or the Föppl-von Kârmân theory has been given, some 
recent work by John [18] is relevant and interesting in relation to 
one of the main assumptions made in these theories. One of the basic 
assumptions, perhaps the most important assumption, in deriving 
that theory (as we mentioned earlier), is based on the notion that if 
the body is thin enough it should be possible to deform it and to bend 
it in space, but without necessarily causing large strains: after all, a 
mathematical surface has this property. In fact, linear relations be­
tween stress and strain are assumed in this theory as a consequence of 
the assumption of small strain. This raises interesting and purely 
kinematic questions which belong to differential geometry in the 
large. 

I formulate the problem in the simplest case, namely that of a 
rectangular solid. Consider first a solid which has all three dimensions 
of the same order of magnitude s. Suppose that it undergoes a topo-
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logical transformation which has continuous first derivatives. We 
make now the assumption that the changes in length per unit length 
of all linear elements, or, in other words, the local strains of linear 
elements, are small quantities of first order uniformly for all points 
and for all directions, and let e be an upper bound for these strains. 
The question then is: is it possible, after an appropriate rigid body 
motion has been subtracted, that the deformations can be large, 
though the strains are small? In the paper cited above John has shown 
that that is not possible. In fact, in this case, a rigid body motion 
can always be found such that the remaining deformation is always 
of the order se, with 5 a representative length for the side of the solid. 
However, if one of the three dimensions of the rectangular solid is 
small, say of length h, so that h/s, with s again a significant length 
for the other two sides of the solid, is small, the situation is quite 
different. In this case it turns out, for example, that if h/s is of order 
e1/2, then a rigid body motion can always be found so that the dis­
placement components in the directions of the sides of finite length 
are of order e, but the displacement component in the direction of the 
small side, that is in the direction normal to the faces of the thin 
plate, is of order €1/2. In other words, the displacement component 
normal to the plate is of a different and higher order of magnitude 
than the displacement components parallel to the faces of the plate. 

This purely geometric theorem clarifies to some extent one of the 
basic assumptions of the Föppl-von Karman theory. This assumption 
was already referred to above in connection with equation (4.5) as 
an approximate replacement for equation (4.4). In these equations 
u and v were displacement components in the plane of the faces of the 
plate and w was the displacement component normal to them. Since 
the strain rjxx is assumed to be of order e, it is clear that if u and v are 
of order e while w is of order e1/2, then equation (4.5) is indeed an 
appropriate replacement for equation (4.4) since then all terms in it 
would be of order e, and the neglected terms would be of order €2. At 
the same time a further insight is gained, i.e. that the displacement w, 
which is really the deflection of the plate, may not be assumed to be 
large, but rather it must be of the order of the thickness h of the plate, 
which in turn is of the order e1/2. I t might be added that experimental 
evidence obtained by actually bending plates shows that the Föppl-
von Karman theory is in fact not accurate if the deflection exceeds, 
say, half of the thickness of the plate. 

I was careful to say that the geometrical theorems of John serve 
to clarify, or perhaps it would be better to say, add plausibility to, 
the basic assumption of the Föppl-von Karman theory, but not that 
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they give a rigorous justification of it, since it is the first derivatives 
of the displacements which figure in (4.4) and (4.5), and John's re­
sults do not refer to the derivatives. In fact, the behavior of the 
derivatives of the displacements in such "almost isometric" mappings 
is a much more complicated affair than is the case for the displace­
ments, as is shown by the fact that quite simple deformations can be 
given explicitly which yield small strains at all points and in all direc­
tions, but which admit isolated points where the local rotation is in­
finite. However, John [19] has also investigated the behavior of the 
first derivatives of the deformation. The investigation is delicate, and 
no more than a rough indication of its outcome can be given here. I t 
is that if the strains are uniformly bounded, then the measure of the 
set of points where the (generalized) first derivatives of the deforma­
tion are above a given bound will become exponentially small when 
the bound for the strains is made small. This result was obtained for 
thick solids, not for solids which are thin. I t has to be modified for 
thin solids and would then furnish one of the elements involved in a 
rigorous proof of the validity of the basic assumption of the thin plate 
theory as embodied in (4.5). 

This discussion about thick rectangular solids vs. thin rectangular 
solids brings up a question which I had had in my mind for many 
years. No one has any doubt that a long slender rod will eventually 
buckle under compression. One might ask, however, whether that 
would be true for a cube which is compressed on two opposite faces 
but is left unstressed and free to deform on the other four faces. This 
question was answered a few years ago by S. Lubkin [26].4 The 
answer turns out to be in the affirmative; the cube does become un­
stable under sufficiently high pressure, but the strain which results 
under such a pressure is enormous, of the order 1/2 in fact, which 
means that the distance between the compressed faces would be re­
duced roughly to about half the original value. There are some solids, 
like rubber, for which such deformations are possible without rupture, 
and hence this result can be of more than purely theoretical interest. 
Lubkin also treated in the same paper two other much more difficult 
cases of the same sort. They were the cases of the hollow thick cylin­
der, and the hollow thick sphere, both under external pressure. These 
solids, it turns out, also become unstable under sufficiently high pres-

4 E . Trefftz [4l] developed a nonlinear theory similar to the one in question here, 
with similar objects in view. This theory was then applied by Kreutzer [24 ] to study 
numerically the buckling of slender columns of circular and rectangular cross-sections, 
with results which show the Euler theory to give correct values for the critical load. 
Lubkin assumes boundary conditions of a type which make explicit solutions possible 
for all thickness-length ratios. 
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sure. But again, if their thickness is not small, the strains resulting 
from the high pressures required to cause instability are once more 
very large. These problems were treated not by introducing a series of 
ad hoc hypotheses (as is done in deriving the thin plate theory) into 
the underlying general theory; rather, they are treated by taking the 
full three-dimensional nonlinear theory, and proceeding by making a 
small perturbation with respect to the very simple symmetrical equi­
librium states the stability of which is to be tested. For example, in 
the case of the cube a uniform pressure over two opposite faces re­
sults in a state of homogeneous strain and constant stress throughout 
the cube—in fact, one finds readily that this simple state satisfies all 
of the conditions of the exact nonlinear theory. A small perturbation 
is then made, and one neglects all but the linear terms in the perturba­
tions.6 Or, as one could also put it, the variational equations relative 
to the basic equilibrium state are formed. The result is a linear 
homogeneous boundary value problem with the perturbed quantities 
as dependent variables, and which contains the applied pressure as a 
parameter. In all three cases mentioned above it turns out that there 
are bifurcations, just as in the Euler column theory and the theory of 
buckling of plates, which manifest themselves through the fact that 
the homogeneous problems have nontrivial solutions for specific 
values of the load parameter. These critical loads, and corresponding 
buckling modes, turn out to be the same as those furnished by the 
Euler theory, the Föppl-von Karman theory, and the theory of thin 
shells, in case the thickness of these solids is made small—thus fur­
nishing some rather strong support for the validity of these approxi­
mate theories. 

In each of these cases also it turns out that there is an infinite spec­
trum of critical values and corresponding modes of buckling. The 
spectrum is a discrete point spectrum, as in the classical eigenvalue 
problems. However, these linear homogeneous problems have some 
unusual features in which they differ from the classical eigenvalue 
problems. For example, while there is an infinite spectrum of buckling 
modes and corresponding buckling pressures, the latter have for all 
cases of thick solids examined so far a limit point which is finite; 

6 E. W. Wilkes [44] also solved (prior to Lubkin) a stability problem for a thick 
solid in the fashion described here. He applies a general perturbation theory due to 
Green, Rivlin, and Shield [ll ] to the problem of stability of a circular tube under end 
thrust, but under the assumption of material which is incompressible. Green and 
Spencer [12] deal similarly with the cylinder under torsion and lengthwise stretching. 
Sensenig [36] has solved the buckling problem for the thick circular plate under 
compression applied to the cylindrical boundary—that is, to the thick plate version 
of the problem of the circular plate treated by Friedrichs and the speaker. 
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only in the limit case of very small thickness do the critical buckling 
pressures become infinite (as in the Euler column theory, for exam­
ple). Also, in the case of the buckling of the rectangular solid in two 
dimensions the bifurcation problem can be formulated in terms of a 
single function which is a solution of the biharmonic equation, so that 
the load parameter occurs only in the boundary conditions, and not 
all in the differential equation. Thus while one obtains an infinite 
spectrum of "eigenfunctions" it is not clear—in fact, it is perhaps 
doubtful—that they share the property of the eigenfunctions of clas­
sical type, i.e. that the latter form a complete set of functions in terms 
of which more or less arbitrary functions can be developed. 

I t would be quite interesting to pursue these problems concerning 
the buckling of thick-walled solids further. So far, nothing more 
than the critical loads and corresponding buckling modes has been 
discussed. Since the relevant problems are linear and homogeneous, 
it is obvious that the amplitude of the buckling modes is determined 
only within an arbitrary multiplying factor, and consequently this 
theory does not make it possible to calculate stresses after buckling 
has occurred. To do that , it is necessary to pursue the solution into 
the nonlinear range; in fact something along the lines of what was 
described above for the case of buckling of the circular plate is neces­
sary. One method of doing so is to carry out the perturbation scheme 
to higher order, which leads, in particular, to the determination of the 
amplitudes of the first order variations. This has been done by Gross­
man [14] for the case of buckling in two dimensions of the rectangu­
lar solid; the resulting formulas are, however, very cumbersome and 
not at all easy to interpret. We had therefore thought that it would 
be more reasonable to attack the full nonlinear problem for this case 
of two-dimensional buckling of the rectangular solid numerically, 
using finite differences, on a digital computer. Although the problem 
can be formulated in terms of two functions which satisfy a pair of 
second order elliptic differential equations, and although the problem 
has only two independent variables, we have not so far found a 
numerical scheme which delivers a correct numerical solution—illus­
trating once more the fact noted earlier that something more than 
fast computers is needed to obtain numerical solutions of nonlinear 
problems in mathematical physics. I t would be quite interesting to 
have numerical solutions of the problem under discussion here for a 
range of thickness-length ratios of the solid, since that would make 
it possible for the first time to decide theoretically whether a given 
column is so thick that it would fail by crushing under end compres­
sion, or so slender that it would fail by becoming unstable and sub-
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sequently be overstressed in bending. For the intermediate range be­
tween very thick and very thin columns there is, in other words, no 
rational design theory in existence at present. 

6. Curved elastic surfaces and shells. My lecture has taken a 
somewhat crooked course, since I began with problems about thin-
walled bodies, then went over to thick-walled bodies, and now I be­
gin this portion of my lecture with a different extreme case, namely 
that of an elastic surface in which the thickness is zero. The theory 
of elastic surfaces deserves more attention than it has had. I t is true 
that the so-called membrane theory of shells—which is much used in 
engineering—really belongs in this category of problems, but this 
theory is of a very special character, as we shall see. 

Various problems concerning deformable surfaces have been 
studied very much in differential geometry and analysis, although 
they are as a rule not thought of in terms of the theory of elasticity. 
For example, there is a vast literature devoted to isometric mappings 
of surfaces immersed in three-dimensional space. I t is, of course, 
intuitively obvious that surfaces in three-dimensional space will ad­
mit, in general, isometric mappings which are not necessarily rigid 
motions, if the boundaries are not subjected to too many constraints, 
and this means that such bodies admit nontrivial deformations for 
which the stresses and strains are zero. On the other hand, there is 
the well-known classical theorem that a closed convex surface in 
three-dimensional space has no isometric deformations except rigid 
motions. (Of course, there is involved here a "boundary" condition, 
i.e. regularity of the deformations over the entire closed surface.) Or, 
put in a different way, a closed convex elastic surface, if subjected to 
a deformation that is not a congruence, must of necessity be strained. 
Thus the theory of elastic surfaces will in general differ greatly from 
that for solids with inner points in three-dimensional space, since 
non-trivial deformations are possible without causing stresses and 
strains. The purely kinematic theory of such isometric deformations 
has been supplemented by a treatment of the equilibrium states pos­
sible in such cases by Beltrami [l ], and by Pailloux [30] when the sur­
faces are subjected to given forces. 

Another classical example of an elastic surface is the minimal sur­
face. This surface is commonly characterized as the surface for which 
the area is stationary when it is subjected to arbitrary variations. 
From the point of view of elasticity the minimal surface can be char­
acterized by a very simple property. The characterization is that the 
surface should not be capable of withstanding shear stresses or, put 
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differently, that the stress system at every point in the surface is one 
of constant tension for all directions through a given point, and, in 
addition, that the external body forces are zero. I t is then seen easily 
that the mean curvature of such a surface is zero, and that, as is 
well known, is the local necessary condition which results from the 
variational problem. 

In connection with minimal surfaces a curious situation arises 
which is of interest in view of our earlier preoccupations. I t is the fol­
lowing. Suppose one considers a soap film stretched between two 
parallel circles in such a way as to create a minimal surface in the 
form of a surface of revolution. I t is well known that this minimal 
surface is generated by a catenary. Such an elastic surface is every­
where under tension, and as the end circles are pulled further apart, 
the tension increases. Earlier, much has been said about the instabil­
ity of elastic solids ; these instabilities in all cases were created because 
of the fact that high compressive stresses were developed. I venture to 
say that if one asked people in the field whether an elastic solid could 
ever become unstable with increases in a certain load such that the 
increases are coupled with always increasing tensile stresses every­
where, that they would be inclined to declare such a thing impossible. 
However, the case just cited of the minimal surface is a counter­
example: it is well known that the soap film, if it is stretched too 
much, eventually becomes unstable and snaps over into two films 
covering the two end circles. On the other hand, at the moment of 
instability the film has the form generated by a smooth catenary, the 
stresses are not large (they are in fact everywhere constant), and 
there seems to be no obvious reason from the point of view of me­
chanics which would account for the loss of stability. The fact is that 
the type of instability exhibited in this case is of a different character 
from that in all previous cases discussed in this lecture. The transition 
from an unstable equilibrium position to a stable one does not take 
place in a continuous fashion; rather, there is a discontinuous jump 
from one to the other which could be followed only by treating the 
problem dynamically. Actually, as is well known, the boundary value 
problem arising from this geometrical question concerning minimal 
surfaces of revolution simply has no solution at all when the end 
circles are pulled too far apart. The dynamical aspect of this problem 
might well be an interesting object for study. 

The basic nonlinear theory of elasticity outlined in § §2 and 3 above 
lends itself well to a treatment of elastic surfaces. At the same time 
it is possible, following Hamel [15], to give an approximate theory of 
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thin curved shells in a very efficient and direct way.6 A thin curved 
shell is defined by starting with a regular surface in the sense of 
differential geometry which is defined by a vector 

(6.1) X = X(uh u2) = fa, x2, xz) 

in terms of Gaussian parameters (#1, u2) which range over a plane 
domain D. To such a surface we adjoin all points on the normals to 
the surface which extend on both sides of it to a distance h/2 to 
obtain a curved shell. In other words, h is the small thickness of the 
thin shell and X defines what is called its middle surface. The only 
hypothesis which Hamel makes is that the normals to the middle surface 
map into normals to the middle surface in its deformed position which 
are straight lines isometric to their pre-images. If we call Xz(ui, u2) 
the unit normal to the middle surface, the undeformed position of the 
body is given by 

h h 
(6.2) R = X(ui, u2) + nXz(ui, u2), ^ n ^ —, 

and for h small enough it is well known that this furnishes a regular 
curvilinear coordinate system (uiy u2, n) in the body. In the deformed 
position we have 

(6.3) JR = X(ui, u2) + nXz(ui, u2). 

Here, X represents the deformed position of the original middle sur­
face X, and Xz is the unit normal of X', the fundamental hypothesis 
clearly receives its appropriate formulation in this relation. All writ­
ers on the theory of thin elastic shells make this or an equivalent 
hypothesis. 

We can now determine the line element ds of our solid and its 
image ds in terms of the coefficients of the line elements of X and X 
and of the coefficients Lik and L^ of their second fundamental forms, 
which measure curvatures. In fact, we have 

(6.4) ds2 = dR-dR= (dX + ndXz + Xzdn)\ 

and 
6 The problem of deformation of thin curved shells is treated here only incidentally, 

so that a discussion and analysis of the literature in the field—which is very extensive 
—will not be attempted. A particular form of the theory, with bibliographical refer­
ences to earlier literature, is given by Reissner [32 ]. A recent and different derivation 
of the theory is given by Koiter [23]; this form of the theory seeks to reduce the 
simplifying assumptions to a minimum by operating with an appropriate strain 
energy density function, though not in the same way as in that of Hamel. 
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(6.5) ds2 = (dX + ndX% + X*dn)\ 

The square of the parenthesis on the right-hand side means, of course, 
that the scalar product is to be taken. We are now in a position to 
define the strain matrix r) in a manner analogous to that which led to 
either (2.4) or (2.4)', and can then form its invariants [77]2 and [rj2] 
which in turn fix the strain energy, once an energy density function 
01 is chosen, in terms of X and X, or, rather, in terms of certain very 
complicated combinations of their first and second derivatives with 
respect to U\ and u% Since the equilibrium problem alone is to be 
treated here, it follows that the conditions of equilibrium and the 
boundary conditions (which include the stress-strain relations, as 
was remarked earlier) result as a consequence of the variational prob­
lem 

(6.6) h < J II U(gng22 - gu)1/2du1du2dn + V\ = 0, 

in terms of V, the potential energy of the external forces. In the inte­
grand n occurs in an explicit fashion (that is a basic advantageous fact 
about this method of deriving the approximate theory), and hence 
can be integrated out. Since U contains second derivatives of all three 
displacement components #»(wi, U2) of the middle surface—they arise 
from terms involving dXz—it follows that the differential equations 
will be of fourth order, as one expects. 

The theory of deformation of thin shells which results from the as­
sumptions leading to (6.3) is peculiar in the sense that the bending 
stiffness is, as it were, attached to the middle surface. Nevertheless, 
the natural boundary conditions which result from (6.6) a t a free 
edge, for example, are correctly interpreted as meaning that the 
applied bending moment and the resultant transverse shear force 
both vanish. (These are both average quantities with respect to the 
thickness of the shell.) 

I would say that Hamel has dissected the theory of bending of thin 
shells in such a fashion that its basic and most important hypothesis is 
singled out, and thus has clarified it quite materially. Indeed, it is 
easily seen that the theory resulting from (6.6) is quite sufficient, 
without any additional hypotheses, to solve problems about curved 
shells subjected to given forces as long as the boundary conditions 
are given geometrically in terms of displacements (a clamped bound­
ary, for example), or if the boundary is free of transverse forces or if 
forces having moments about the tangent to the middle surface, and 
with results identical with those of other authors who work with a 
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more complicated basic theory. The theory of Hamel is also very 
general since it involves no assumptions about the magnitude of the 
deformations nor any restrictive hypotheses about the stress-strain 
relations. The theory of Föppl-von Karman discussed earlier can, for 
example, be deduced from it (as Hamel [lS] does), by making a 
number of additional restrictive assumptions. 

After this digression about the theory of bending of thin shells I 
return to questions concerning elastic surfaces without bending stiff­
ness. The appropriate mathematical theory for such problems is de­
rived as a special case from (6.6) simply by setting n = 0, i.e. by taking 
the thickness of the shell to be zero. If we call gap and gap the coeffi­
cients of the line elements of X and X, we have for them and for the 
relative elongations e=(ds — ds)/ds, the relations 

(6.7) 

with 

and 

(6.8) 

gocfi 

i«p 

'j,ct ~~ 

X = 

dXj 

dUa 

dXj 

dUa 

dXj 

dUa 

dXj 

dUp 

dXj 

dup 

(1 + *)2 = 

— %j,ct%j,P) 

= = ^JtCt^JtP) 

du 

gafidUadUp 

gapduadUp 

in which the Greek indices range over 1 and 2, while Latin indices 
continue to range over 1, 2, 3. The functions #t-(wi, u%) and £t-(wi, u%) 
are, of course, the components of the vectors X and X. The principal 
extensions et- correspond to X»= (1+e*)2 with X* a root of 

g n — Xgn | i 2 — Xgi2 

g22 — Xg21 g22 —• Xg22 
0. 

I t is therefore clear that the following are invariants in terms of which 
the strain energy density can properly be defined: 

gllg22 ~ 2g12gi2 + g22gll 
) 

, , nN gllg22 ~ gij 
(6.9) _ _ 2 

gllg22 — gl2 

gllg22 - iVt 12 
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Thus U in (6.6) is a certain function {ƒ = U(r, s). The variational 
equations resulting from (6.6) can then be put in the form: 

d / (9*11 2 l/2\ 2 1/2 
(6.10) I (gng22 - gu) ) + Fi(gng22 - I12) = 0, 

dUa \dXi,a / . , ,* „ 
i = 1, 2, 3. 

Boundary conditions, and with them the stress-strain relations, would 
also be obtained. In the set (6.10) of three equations for the functions 
Xi the quantities F{ represent the components of the external forces 
per unit area in the deformed position. From (6.7), (6.8), and (6.9) 
it is clear that these differential equations are all of second order in 
the components £t- of X as dependent quantities. This is what one 
might reasonably expect, since it would seem physically appropriate 
to prescribe values for the three displacement components at the 
boundary (for example, that all of them should vanish if the bound­
ary of the surface is supposed fixed), and three second order partial 
differential equations for the quantities Xi are therefore needed. But 
then the differential equations should also be of elliptic type, and that 
gives rise to a number of observations of interest from more than one 
point of view. 

I t might seem odd that the remarks just made should be necessary 
since one expects that any reasonably formulated equilibrium prob­
lem in continuum mechanics should lead to a system of differential 
equations of elliptic type, and that the condition of a fixed boundary 
would then be a legitimate boundary condition for them. However, 
the great bulk of the literature about elastic surfaces concerns itself 
with a basic theory in which neither of these expectations may be 
realized. This theory, to which a passing reference was made earlier, 
is called the membrane theory of shells, and it has considerable prac­
tical value and importance for the design of structures of quite 
varied character and use (see, for example, the books by Flügge [8] 
and Novozhilov [29]). 

The theory presented in these books has a very simple basis. One 
assumes that the stresses throughout the thickness of the shell are 
the same as in the middle surface, and that the deformed middle sur­
face represented by X differs by an infinitesimal of first order from 
the original undeformed surface given by X, so that it becomes 
legitimate as a first approximation to write down equilibrium condi­
tions in terms of stress, and, what is more, write down these conditions 
in the undeformed position, which is of course known. Thus there 
would be three linear equations for the three unknown stresses, and 
these would correspond to the three equations (6.10) of the general 
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nonlinear theory. This all sounds quite reasonable, and in fact for 
many important practical problems it is reasonable. 

Nevertheless, the theory has queer features, and it is not always 
sufficient, even in practice. To begin with, the mechanical system 
postulated is a statically determinate system, since the three stress 
components are determined from the applied loads from the three 
conditions of equilibrium alone and without any necessity to consider 
deformations and strains. Afterwards, upon introducing the custom­
ary linear relations between stress and strain it is possible to deter­
mine the strains, and from them the displacements. In general one 
is in no position to prescribe the displacements arbitrarily at the 
boundary; in particular it is not possible in general to prescribe a 
fixed boundary. Also, it turns out that the system of equations for the 
stresses can be reduced to a single second order partial differential 
equation for one of the stresses as a function of the surface parameters 
(#1, U2), and this linear equation is elliptic or hyperbolic depending 
upon whether the original surface has positive or negative Gaussian 
curvature. (If the Gaussian curvature is zero, so that the original 
middle surface is a developable, the differential equation is parabolic 
or degenerate.) In practice, the structures dealt with (roofs of build­
ings, etc.) are usually at least locally convex (i.e. the Gauss curvature 
is positive), so that the engineers need not try to solve boundary 
value problems for hyperbolic equations. The disagreeable feature 
that fixed boundaries are not allowed is commonly dealt with by in­
voking bending stiffness so that a system of differential equations of 
higher order results, and that, even in the linear theory, permits the 
imposition of conditions corresponding to a fixed boundary. However, 
I myself once had occasion to deal with a problem in which the shell 
was so thin that bending stiffness was effectively nonexistent, but 
still it was quite necessary to have a fixed boundary.7 In such a case, 
resort must be had to a nonlinear theory—for example, that embodied 
in (6.10) ; actually, the problem was solved (cf. [5]) by using a theory 
which is a simplified version of this general nonlinear theory. 

The last remarks raise an interesting question, i.e. what is the rela­
tion between the classical linear membrane theory of shells and the 

7 The problem was tha t of a so-called air-supported roof. During the War it was 
proposed to erect buildings in circular form with a diameter of several hundred feet 
roofed over by a thin steel sheet perhaps 1/8" in thickness (and hence clearly so thin 
that the bending stiffness would be negligible), and blown up to provide headroom, 
without interior supports to obstruct the storage space, by excess air pressure. The 
idea is not as silly as it might sound: only a few ounces per square inch of internal 
excess air pressure are required to hold such a roof in place and even to strain it up to 
the yield point for steel. 
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theory embodied in equations (6.10), and I wish to analyze it briefly. 
The basic fact of the matter is that equations (6.10) are elliptic only 
with respect to solutions for which the principal stresses are every­
where tensions, not compressions. Thus the type of these equations 
is not fixed by the sign of the Gaussian curvature of the surface in its 
original position, as is the case in the classical linear membrane the­
ory. On the other hand, the two theories should be identical when the 
system (6.10) is linearized, which means that , here also, these equi­
librium conditions are written down for the surface in its original 
undeformed position. This would appear to be a contradiction, since 
this system is in general elliptic provided only that the stresses turn 
out to be tensions and independent of the Gaussian curvature of the 
surface. However, the fact is that the system (6.10) degenerates in 
order when it is linearized so that here also the imposition of boundary 
conditions corresponding to a fixed edge is not possible. What this 
means is that the linearized theory of elastic surfaces, unlike that for 
three-dimensional elastic bodies, is not a regular perturbation theory 
in which the dependent quantities are developable in power series in 
a small parameter which converge in the neighborhood of the un­
stressed and unstrained state; instead, this linear theory of elasticity 
is an asymptotic theory in such a parameter in which boundary layer 
effects are present and cannot be ignored if conditions on all three 
displacement components are imposed a t a boundary; hence the 
underlying nonlinear theory must be invoked in such cases. This point 
of view was one of the main features of the paper by Bromberg and 
the speaker [5] cited earlier, but for a simplified version of the theory 
embodied in equations (6.10) and for the special case of a spherical 
surface deformed into a surface of revolution, so that the question of 
ellipticity was not relevant. However, the condition on the sign of the 
normal stresses turned up in another connection in this case, i.e. 
with respect to Legendre's necessary condition concerning the second 
variation of the potential energy: only if the normal stresses are ten­
sions can the equilibrium position correspond to a minimum of the 
potential energy. Though this phenomenon has not been investigated 
in the general case embodied in equations (6.10), it seems highly 
probable that it would hold there also, and thus lead to the conclusion 
that stable equilibrium positions of an elastic surface are not possible 
if a compressive stress occurs anywhere—and that coincides with 
what one would instinctively feel to be correct physically. In the 
classical linear membrane theory, on the other hand, all equilibrium 
positions are stable. In effect, the linearization is tantamount in these 
cases to the imposition of a constraint strong enough to ensure 
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stability. In practice, shells are usually loaded in such a way as to 
be in compression, and hence their positions of equilibrium corre­
spond to unstable states of the system characterized by the underly­
ing general nonlinear theory. However, such shells are commonly 
made stable by virtue of their bending stiffness, and it is one of the 
many odd features of the linear membrane theory of shells that it is 
used successfully in practice even though the design formulas ignore 
exactly that feature which alone makes the shell stable, i.e. its bend­
ing stiffness. 

In connection with problems of elastic surfaces centering around 
(6.10) it is worthwhile to consider their relation to problems about 
inextensible but perfectly flexible surfaces, and particularly for closed 
surfaces. A classic problem, already mentioned, was that of the 
uniqueness within orthogonal transformations of the closed convex 
surfaces under isometric deformations—a fact proved in a wholly 
satisfactory way by Herglotz [ló] relatively recently. Nothing much 
is known about the case of nonconvex closed surfaces, nor about 
closed surfaces which are not homeomorphic with the sphere; these 
cases are made awkward by the fact that the relevant partial differ­
ential equations (of Monge-Ampère type) are not elliptic everywhere. 
In elasticity, however, the differential equations are in general of 
elliptic type. Thus the uniqueness theorems for closed surfaces might 
be more amenable to treatment—even if bending stiffness is also 
taken into account (when, in fact, the differential equations are cer­
tainly elliptic)—so that generalizations of classic problems in differen­
tial geometry in the large might be within reach. Also, the limit cases 
of zero bending stiffness, and of inextensibility of the surface, are de­
generate cases in which boundary layer phenomena are to be expected 
because of the loss of order of the differential equations in the limit: 
there exists, in other words, a hierarchy of limit problems of this sort. 
In effect, there is a field for study here which could be quite fruitful 
from more than one point of view. 

7. Conclusion. In my introductory remarks I noted that twenty 
years have passed since I addressed the Society at its invitation. I t 
struck me that I might therefore by reason of age alone be permitted 
to make a few remarks of a general character about mathematics in 
our country, especially with regard to some aspects of it which touch 
my own personal interest and bias. 

I t is a strange thing that in this country, which prides itself so much 
on the practical use it makes of all the scientific knowledge which 
has been gathered over the centuries, mathematics has been pursued 
for the last fifty years or more in a pronouncedly abstract manner, 
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and that that side of our science in which the relation between mathe­
matics and the physical world plays an important role has been very 
much neglected. Willard Gibbs was in this respect an exception 
among mathematicians born in the United States. I t should hardly 
be necessary to add that the accomplishments of mathematicians in 
this country have been notable indeed—in fact, the obvious high 
quality of this work and the attraction of good students to those who 
had carried it out were doubtlessly the main factors at play in fixing 
the mathematical climate here. There have also been outstanding 
individuals who deviated from the norm, such as G. D. Birkhoff, for 
example. 

There has been some change in this situation in the last ten or 
fifteen years in this country, which was brought about largely by 
mathematicians who came here from Europe in the thirties and early 
forties. To this day, most of the better-known mathematicians who 
pursue what is called applied mathematics in this country were 
European born and trained. This group of Europeans—the people in it 
are mostly well known to you all—has induced considerable changes; 
but I observe that the abstract point of view and the neglect, even 
the contempt, for that kind of mathematics which concerns itself 
with the world of reality, still represents the prevailing tone in Amer­
ican mathematics. The plain fact is that the leading practitioners of 
that branch of mathematics in which the interplay with mechanics 
and physics is a strong motivation are nearly all of the older genera­
tion, and there seem to be very few replacements for them in sight. 
In my view this is not a healthy state—neither for our science itself, 
nor for the welfare of this country. Furthermore, there are strong 
forces at work, I observe, which have the tendency to perpetuate 
this situation by propagating the notion that the strongly abstract 
approach to mathematics is the suitable way to introduce it to chil­
dren in the elementary schools. It would seem to me that this atti tude 
ignores human psychology and turns reason upside down: it ignores 
the historical fact that the mode of progress in mathematics has always 
consisted in formulating the appropriate and truly valuable abstrac­
tions on the basis of prolonged experience of a very concrete char­
acter, and the accompanying highly plausible inference that that is 
also the way most peopled minds work. 

I t should not be thought that I and other colleagues who share my 
attitude feel ourselves in opposition to those mathematicians who 
chose to pursue their work in as abstract a fashion as they find suita­
ble and rewarding. Thus we have no particular quarrel with Bourbaki 
—that constitutes serious mathematical work which needs no com-
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ment from us; it is rather with the petit Bourbaki that we have our 
quarrel. Our point of view is that it is vital for the health of our sci­
ence that the contact with the physical world should be preserved 
and cultivated, not merely because of the obvious practical achieve­
ments which inevitably result from such work, but because the whole 
history of mathematics shows that such preoccupations have a stabil­
izing, vitalizing, and fruitful effect on our science. 

For many years I have found it a pleasure to read poetry in several 
languages, and since there is one poem of Goethe which reinforces 
the view just expressed (though not without a certain element of 
ambiguity), I take the liberty of closing my lecture by quoting two 
stanzas from it: 

Denn mit Göttern 
Soil sich nicht messen 
Irgendein Mensch. 
Hebt er sich aufwârts 
Und berührt 
Mit dem Scheitel die Sterne, 
Nirgends haften dann 
Die unsichern Sohlen, 
Und mit ihm spielen 
Wolken und Winde. 
Steht er mit festen, 
Markigen Knochen 
Auf der wohlgegründeten 
Dauernden Erde, 
Reicht er nicht auf, 
Nur mit der Eiche 
Oder der Rebe 
Sich zu vergleichen. 
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