THE OPTIMAL LEBESGUE-RADON-NIKODYM INEQUALITY¹

BY E. M. ALFSEN

Communicated by Edwin Hewitt, January 23, 1962

The aim of the present paper is to sketch some further developments of order-integration (cf. [1; 2; 3]), and in particular to point out how the absence of lattice distributivity introduces some new and interesting aspects of the Lebesgue-Radon-Nikodym Theorem. Details will be published elsewhere.

The formula $\mu(x, y) = v(y) - v(x)$ establishes a 1-1 correspondence between the set of valuations of a lattice L (with identification modulo $v_1 \sim v_2 \Leftrightarrow v_1 - v_2 = \text{const}$) and the set L' of projectivity invariant, additive interval-functions ("quotient-functions") on L. If L is modular, then the equivalence classes of finite chains between x and y ($x \leq y$) form a directed set in virtue of the Schreier-Ore Theorem. Hence we may define Riemann-Darboux integrals of projectivity invariant interval-functions in the natural way. The R. D. integral of μ is additive (whenever it exists) and will be denoted by S_{μ} . Now the maximal directed vector subspace $L^* = (L')^+ - (L')^+$ of L' will consist of those $\mu \in L'$ which are of bounded variation in the sense that

(1)
$$S_{|\mu|}(x,y) = \sup_{x=x_1 \leq \cdots \leq x_{n-\mu}} \sum_{i=1}^n |\mu(x_{i-1},x_i)| < \infty;$$

for every interval (x, y). Moreover, L^* will be a conditionally complete vector lattice under the operations $\mu \vee \nu = S_{\mu \vee \nu}$, $\mu \wedge \nu = S_{\mu \wedge \nu}$. Decomposition of $\mu \in L^*$ in positive and negative parts yields the Jordan decomposition of μ (obtained by G. Birkhoff [4]).

The classical (Lebesgue-Vitali) definition of absolute continuity, $\nu \ll \mu$, for functions μ , ν on R can be directly transferred to the case in which μ , ν belongs to the space L^* of some modular lattice L. (The standard definition of $\nu \ll \mu$ for finitely additive measures μ , ν on a Boolean ring is obtained from the general definition by reduction of the chain involved to a two-interval chain by application of the Boolean difference available in this particular case.) The concept of mutual singularity, $\mu \perp \nu$, can be defined for members of L^* in an equally natural way. Let $\mathfrak{A}(\mu)$ denote the closed ideal ("famille com-

¹ Research supported in part by the National Science Foundation, U.S.A. (N.S.F.-G18975).

plète," "bande") generated by $\mu \in L^*$. Then it can be proved that:

(2)
$$\nu \ll \mu \Leftrightarrow \nu \in \mathfrak{A}(\mu); \quad \nu \perp \mu \Leftrightarrow ||\nu|| \wedge ||\mu|| = 0.$$

Hence F. Riesz' fundamental theorem on the decomposition of conditionally complete vector lattices into closed ideals [8; 6] yields a Lebesgue-decomposition in L^* (proved by H. Bauer [5]).

Let μ be an arbitrary, but fixed positive member of the space L^* of some modular lattice L. Then μ is a (weak) order unit of $\mathfrak{A}(\mu)$. Assume henceforth that L has a least element ϕ and a greatest element e. Then $\mathfrak{A}(\mu)$ is an abstract L-space in the sense of Kakutani [7] under the norm $N(\nu) = \|\nu\| (\phi, e) = S_{|\nu|}(\phi, e)$. Hence $\mathfrak{A}(\mu)$ is isomorphic to $L^1(S, \mathfrak{F}, m)$ where (S, \mathfrak{F}, m) is an essentially unique, totally finite measure space whose measure algebra \mathfrak{F} (i.e. \mathfrak{F} modulo null sets) is canonically isomorphic to the complete Boolean algebra \mathfrak{G} of closed subideals of $\mathfrak{A}(\mu)$. We call (S, \mathfrak{F}, m) the representation space of $\mathfrak{A}(\mu)$, and we call the representative function $f_{\nu} \in L^1(S, \mathfrak{F}, m)$ of $\nu \in \mathfrak{A}(\mu)$ the density function of ν relative to μ .

For every $x \in L$ the annihilators

$$\mathfrak{F}_{x} = \{ \nu \mid \nu \in \mathfrak{A}(\mu), \nu \equiv 0 \text{ on } [x, e] \},$$

$$\mathfrak{F}'_{x} = \{ \nu \mid \nu \in \mathfrak{A}(\mu), \nu \equiv 0 \text{ on } [\phi, x] \}$$

are closed subideals of $\mathfrak{A}(\mu)$, $\mathfrak{F}_x \cap \mathfrak{F}_x' = (0)$, and $x \to \mathfrak{F}_x$, $x \to \mathfrak{R}_x = L^* \ominus \mathfrak{F}_x'$ are "meet"-preserving and "join"-preserving mappings of L into \mathfrak{B} , respectively. Let π^* be the "lifting" of the mapping $y \to x \wedge y$ from L to the set of (not necessarily projectivity invariant) interval functions. For every $\nu \in (L^*)^+$ the components $P_x \nu$, $Q_x \nu$ of ν into \mathfrak{F}_x , \mathfrak{R}_x are the greatest and smallest projectivity invariant interval-functions, respectively, such that:

$$(3) P_{x\nu} \le \pi^*\nu \le Q_{x\nu}.$$

From this one can conclude:

- (i) $P_{x\nu}$ is the greatest member of L^* for which $0 \le P_{x\nu} \le \nu$ and $P_{x\nu} = 0$ on [x, e]. On the other hand, $Q_{x\nu}$ is the smallest member of L^* for which $0 \le Q_{x\nu} \le \nu$ and $Q_{x\nu} = \nu$ on $[\phi, x]$.
- (ii) If x belongs to the distributive center Z of L (i.e. if x forms distributive triples with any two elements of L), then $y \rightarrow x \wedge y$ is lattice preserving, hence $\pi^*\nu$ is projectivity invariant, and so we have equality signs in (3). Thus $x \in Z$ implies $\mathfrak{G}_x = \mathfrak{R}_x$.

We denote the members of $\tilde{\mathfrak{F}}$ corresponding canonically to \mathfrak{G}_x , \mathfrak{A}_x , by H_x , K_x , and recall that the mappings $x \to H_x$, $x \to K_x$ will be "meet"-preserving and "join"-preserving, respectively, and that $H_x \subset K_x$,

with $H_x = K_x$ whenever $x \in \mathbb{Z}$. Now, we consider an arbitrary $\nu \in \mathfrak{A}(\mu)^+$ corresponding to a normalized valuation v (i.e. $v(\phi) = 0$), and by the correspondence $v \leftrightarrow \nu$ we may write f_v instead of f_v . By means of the explicit construction of the Kakutani representation and the possibility of a spectral resolution in $\mathfrak{A}(\mu)$, we can prove the following general Lebesgue-Radon-Nikodym inequality:

(4)
$$\int_{H_{-}} f_v dm \leq v(x) \leq \int_{K_{-}} f_v dm.$$

This result is in fact optimal in the sense that if

(5)
$$\int_{A} f_{v} dm \leq v(x) \leq \int_{B} f_{v} dm_{H}$$

for all $\nu \in \mathfrak{A}(\mu)$, then $A \subset H_x \subset K_x \subset B$. (Passage from the actual members of \mathfrak{F} to representatives belonging to \mathfrak{F} , will of course transfer the last relations to inclusions modulo null-sets.) To verify this assertion, we consider the component ν of μ into the closed subideal \mathfrak{A} corresponding (canonically) to A. Then $f_{\nu} = \chi_A$, and so $\nu(\phi, e) = \int f_{\nu} dm = m(A)$. By (5) we also have $\nu(\phi, x) \geq \int_A f_{\nu} dm = m(A)$, and hence $\nu(x, e) = \nu(\phi, e) - \nu(\phi, x) \leq 0$. By the positivity of ν this entails $\nu(x, e) = 0$, and in fact $\nu \equiv 0$ on [x, e]. In virtue of (i) we have $\nu \leq P_x \mu$, and so $\mathfrak{A} \subset \mathfrak{F}_x$ proving that $A \subset H_x$. Similarly we can prove $K_x \subset B$.

It follows from (ii) that the distributive center Z of L is mapped homomorphically into $\tilde{\mathfrak{F}}$ by $x \rightarrow H_x(=K_x)$, and that:

$$v(x) = \int_{H_x} f_v dm$$

for $v \in \mathfrak{A}(\mu)$ and $x \in \mathbb{Z}$. (Actually (6) remains valid even if we only require the equivalence class \bar{x} of x modulo v to belong to the distributive center of $\mathbb{Z}/[v]$.) In particular, we shall have an exact Lebesgue-Radon-Nikodym Theorem (6) on distributive lattices.

If L is taken to be a Boolean algebra, then v becomes a finitely additive measure (recall $v(\phi) = 0$), and the mapping $x \to H_x$ will be a representation (but not necessarily a σ -representation) of L into $\mathfrak B$. If L is taken to be the Boolean algebra $\mathfrak G$ of some totally finite measure space $(T, \mathfrak G, p)$ and v = p, then the σ -continuity of v will imply that $x \to \mathfrak F_x (= \mathfrak R_x)$ is a σ -representation, and hence so is $x \to H_x (= K_x)$. From this one can conclude that $(T, \mathfrak G, p)$ is one of the possible realizations of the (essentially unique) representation space. Thus we obtain the standard Lebesgue-Radon-Nikodym Theorem in this case.

REFERENCES

- 1. E. M. Alfsen, On a general theory of integration based on order, Math. Scand. 6 (1958), 67-79.
- 2. ——, A remark concerning the article: "On a general theory of integration based on order," Math. Scand. 7 (1959), 106-108.
- 3. D. A. Kappos und A. Mallios, Der Integralbegriff in o-topologischen Verbänden, Bull. Soc. Math. Grèce, N.S. 1, Fasc. 1 (1960), 98-105.
- 4. G. Birkhoff, Lattice theory, Amer. Math. Soc. Coll. Publ. Vol. 25, Amer. Math. Soc., New York, 1948.
- 5. H. Bauer, Reguläre und singuläre Abbildungen eines Verbandes in einen vollständigen Vektorverband, welche der Funktionalgleichung $f(x \lor y) + f(x \land y) = f(x) + f(y)$, genügen, J. Reine Angew. Math. 194 (1955), 141–179.
 - 6. N. Bourbaki, Intégration, Actualités Sci. Ind., no. 1175, Hermann, Paris, 1952.
- 7. S. Kakutani, Concrete representation of abstract (L)-spaces and the mean ergodic theorem, Ann. of Math. (2) 42 (1941), 523-537.
- 8. F. Riesz, Sur quelque notions fondamentales dans la théorie générale des opérations linéaires, Ann. of Math. (2) 41 (1940), 174-206.

University of Washington and University of Oslo