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In the study of coincidence problems for birth-and-death processes
[1;2; 3] the authors encountered systems of orthogonal polynomials
in several variables constructed as follows. Let Y(x) be a distribution
function on the semi-axis [0, ®) with infinitely many points of in-
crease, and with finite moments of all orders. Let Q.(x),#»=0,1,2, - - -
be the orthgonal polynomials for the distribution ¢, and taking

integers 0 <1, <4:< - - - <%, form the determinant

T, G2, * * *, O
) (™) < det Qutan
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This is a polynomial in the # variables %1, - - - , x, and the collection
of all such determinants (054, < -+ - <4,) forms an orthogonal sys-
tem on the simplex S= {(xl, cee, X)) 0SS << - - <xn}. In

fact if [5Q:i(x)Q;(x)dy(x) =38;;/m;, then (see [2])
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A few properties of the polynomials (1) were given in [2]. Here we
give an account of additional properties and indicate some interesting
generalizations.

We assume throughout that the Q,(x) are normalized so Q,(0) =1.
This normalization is possible since all zeros of Q, lie in the open
interval (0, «). The recurrence relation then has the form —xQ,

= I-LnQn—l - ()\n +Mn) Qn +>\nQn+1 where Mo = 0, Mnt1 > 0, )\,, >0 for n = 0.
The constants 7; are
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1. Recurrence relations. The determinantal polynomials
i1, 0 v vy e
(o 02)
xl’ o o o y xn
of order # satisfy # different recursion formulas which may be derived

from the basic recurrence formula — xQ(x) = AQ(x), where
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A=|laill5-o and ay=XN;if j=i41; —\i+ps) if j=4; ps if j=4; and
0 otherwise (¢=0, 1, - - - ).

Applying the composition formula of [2, formula (10)] to the re-
cursion formula, we obtain

PR
(-—1)"x1x2 LI an( b ’ >

Xy, + c vy X

4) _ Z A(il"'°’i”)Q(al’aZ)"',an)
= 0saj<ag<  + ~<ay Q1y ¢ 0, Oy X1, gy * * 4 Xn
where
A(il"'°’in)
Q1y ** 0y Op
denotes the minor of 4 formed with the rows 4y, - - -, 4, and the

columns ay, * * *, Oy

With the aid of (4) and the Laplace expansion of nth order deter-
minants, we obtain

(—1)*Ea(s, - - 5 2)Q (il, R z)

xl, ey, Xn
(5) 1561<+ + <Brsn 0sr1<ra< e+« <rg

xA(iﬂp'",iﬂk>Q<(fl”‘fk) (iﬂl"‘iﬁk)°>
rl’onc’rk xl,--o’x”
k=1,2,---,m,

where Ey(x1, * - -, %,) is the familiar kth order elementary symmetric
function of # variables, i.e., > Ex(x1, - + + , x,)t*= [J(1+2x.) and the
meaning of the right-hand side in (5) is as follows: we select a k-tuple
gy, B8y ¢ ¢ ¢ 5 g from (43, 29, ¢ -+, 1,) and let (g, « - -, 1,)° consist
of the remaining #»—£k indices which together with (¢5,, 15,, * * * , %8,)
comprise (1, 43, *+ * -, %,). The summation in (5) is extended over all
selections (7g,, 7g,, * * *, %) Of (¢1, %¢, + + -, 4,) and arbitrary 05n,
<ry< -+ - <ry. Thesetof indices (1,73, - - +,7x) and (45, 95,, = * *,98,)°
occurring in

Q(('l’ T2y * 0, ’k)('iﬁv Tty iﬂk)c>
xl’ o o o N xn

are always arranged in increasing order.
The sum occurring in (5) is finite since
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A(iﬁv o ’,'iﬂk) =0
rl, KNI 7
unless |4g,—7;] <1 (=1, - - -, k). The special case k=1 in (5) re-
duces to

1:1’ Ceey
—@ x4t - +xn)Q< >
X ..’xn

1 °
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+ AikQ( .
Xyy * v 0y Xn

The case k=n is (4).
An alternative form of the kth recursion relation is

1:1’ Toy * * y On
Ek(Aly A2; ] A")Q( ’ ,x>
<y %n

xl’ xz’ P
i1, G2, - v+, dn
= (_1)kEk(x11 Koy = * xn)Q(
X1y X2y * * 4 Xn
where
z.l;""'in 1:1:"'yiv—lrjy'iV+1:"':in
AvQ( = 24,0 .
xl’ooo’x” j xl’ooo,xn

The following uniqueness assertion holds. If ¢;,,...,:, (%1, «+ « +, %) is
a system of functions which satisfy the full set of all # recurrence

relations then

il, SICIEI
By e erin(Xny 0, ®n) = fl1, - - -, xn)Q( . )
X c ey %

1y °

where f does not depend on 3, « « +, 2.
2. Christoffel-Darboux formula. The identity

N0 (n, n+ 1)
©) L §Qk<x>ek<y)rk
hored x,’y>
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is called the Christoffel-Darboux formula. It has the generalization
(n, n+l, .o nt+p—1,n4p,n4+p+1, - - - ,n+17+m—1)

X1y X2y * * * 5 Xpy Y1y V2y * * ¢y Im
Q(O» 1,-.-,p—1,p, P+1,'°';P+m—1)
X1y X2y * * 5 Xpy Y1, Y2 * * * 5 Im

R 0 (kl, o x,,)Q (kl, R N sz Tk ,n+m—1)

X * 0 Yy **ty Ym

Osk‘;-&kp ( sttty p— 1)( e, m— 1)
X1, ° 0, Xp Y1, 05 Im

valid for 2 <p =m. This formula and those of the next section can be
derived by inductive arguments based on Sylvesters’ identity.

H @ 7rn+r-1>\n+r+c-z)

rml sl Tr—1Nrje—2

Thy * * 'Tkp

3. The Wronskian identity. The polynomials of the second kind
On( ) Qn(y)
® R . 10

satisfy the recurrence relation for n =1, and the Wronskian 1dentity

Qn(x) Qu+1(x) Qni1(®) 0P (%) = —1/(ama). For 0541<ip< - - - <4,
< 1‘r+1 < - <’Ln let

Q(il’ 52,...’1"_
X1y Xz * * ¢y Xp

0i(®), Qu(m2), + + -5 Qiy(®)y Qfy (Brsd)y -+ + Qf(;:(xn)

Qiz.(xl)a Qi:.(x2); R} Qia.(x"), Qt(‘:.)(xr+1)) ) le (xn)

rply Grb2y * 0y 1’")

Xrt1y Lrg2y © ° * 5 Xp,

® =

(0)

0in(%2), Qin(®2), = - + 5 Qiy(r), Qi (Hrgs)y = - = 5 Qs ()
The formulas
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and
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Q(nl n+1,:---,n4+r—1 n+r,-'-,n+2r—1)
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are generalizations of the Wronskian identity for the polynomials
cited before.

4. Positivity. If x =0 then Q.(x) >0. The analogous inequality for
the determinants is

By, v o, iy
(_1)n(n—1)/2Q( b ’ ) >0 faor<a<: - <220,
X1y * * 9y Xn

and this, together with a number of related and sharper inequalities,
has been discussed in detail in [2].

5. Continuous analogues. The function ¢(x, N\) =cos N'/2x satisfies
d2
w¢=_)‘¢a 0<x< o,
#(0,\) =1,  ¢,(0,)) =0.

For fixed x =0, ¢ is an entire function of A and these entire functions
are analogous to the polynomials. We form the determinants

(10) ¢(”l’ me x) det ¢(x:, \)
= e Xy Nj.
YYD PRI W 4

where 0 Sx;<x3< - + + <, For each of the above described prop-

erties of the determinants (1) there is a similar property of the deter-
minants (10). For example in place of the system of # recurrence
relations we have a system of # partial differential equations

62 62
(11) (—l)kEkO\ly'")>‘ﬂ)u=Ek(ax2’ "'7ax2>u’k=1,2)"'1n1
1 n

where # is the determinant (10). The following uniqueness assertion
holds. If u=u(x1, + - - ,%a; A1, *+ * + , N\a) has continuous partial deriva-
tives up to order 2z and satisfies all # equations (11) are the closed
simplex 0=Sx1Sx:< ¢« + - Sx,< », and the boundary conditions
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%2,(0, ®3, %3, + + +, Xnj A1y 0 0 75 Aa) =0,
u(xl,xg,---,x,.;)q,---,)\,.)=0 ifx,-=x,'+1,i=1,---,n -1,
then

xl, ey, Xn
#=f(Ay, **+, N .
o, w70
Similar results may be obtained when ¢(x, A) is replaced by the
system of solutions of more general Sturm-Liouville problems.

6. Other properties. Many of the results established for the poly-
nomials (1) have analogues dealing with the permanents

Q[h’ ’ 1‘1&] = 2 Qu(®e) * * * Qin(@om),
xl’ ey, Xn. o
the sum running over all permutations ¢ of (1, 2, « + +, n).

Other properties of polynomials in one variable possess analogues
for the determinantal systems. We can discuss the properties of zeros,
completeness, quadrature formulas, generating functions in the classi-
cal cases, etc. Details of these developments, the proofs of the results
announced above, and their extensions to eigenfunctions of second
order differential operators will be elaborated elsewhere.
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