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During recent years there has been growing interest in logical 
calculi with infinitely long expressions (see e.g. [2; 4; 5]). However, 
all results obtained so far, many of them very remarkable, are seman­
tic in character. The reason is that, while the syntax of the "classical" 
calculi could be "Gödelized" and then studied with the aid of the 
theory of recursive functions, no such procedure has so far been de­
vised for the infinitistic calculi. To do this, one should possess trans-
finite analogues of the theory of recursive functions and of arith-
metization. 

In the investigations reported here, such analogues are constructed 
and applied to infinitistic calculi. 

Let (*)a be an arbitrary, but fixed, regular initial ordinal. By ordinals 
we shall mean ordinals <coa, by a sequence—a well ordered sequence 
similar to an ordinal, by the length of a sequence—its order type, and 
by a function—a function whose (single) argument ranges over the 
set of all sequences (of a fixed length) of ordinals and whose values 
are ordinals. 

Wa-recursiveness. Our first aim is to explicate the notion a function 
whose value, for each given value of its argument, is "calculable" in a 
sequence of steps. This is done with the aid of a formalism (with 
infinitistic rules of formation and transformation) which is analogous 
to Kleene's formalism for recursive functions. (See [3, Chapter XI].) 
We use much of the metamathematical terminology of [3], in a sense 
analogous to that in which it is used there.) 

PRIMITIVE SYMBOLS. " = ", " '" (stroke), "sup" (the supremum oper­
ator), "0", a variable ux$" for each £<o>a, a function letter (f.l.) 
"ƒ*" for each £ <coa. 

NUMERALS. 0 followed by a sequence of length j8 of strokes is the 
numeral for /3. We denote it by (3. 

TERMS, (a) Each numeral is an (atomic) term. 

1 This is a preliminary report of results obtained in a doctoral dissertation prepared 
at the Hebrew University under the supervision of Dr. M. O. Rabin. The author 
wishes to take this opportunity to thank Professor A. Mostowski for valuable sug­
gestions made during a period spent by the author at Warsaw University as a UNESCO 
Fellow. 
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(b) A variable followed by a sequence of strokes is an (atomic) 
term. 

(c) If {r$}{</s is a sequence of terms and ƒ is a f.l. then 
f(fo, T\y - - • , r%, • • • ) is a term. 

(d) If r is a term, x is a variable and y is a numeral or a variable, 
then supx<y (r) is a term. 

(e) No others. 
In our formalism (in contrast to Kleene's) there are bound occur­

rences of variables; each occurrence of x in supx<y (r) is bound, except 
its occurrence as the y under the sup, if y happens to be the same 
as x. 

A numerical equation is an equation of the form 

/(«o, *i, • • • ) = «, 

where ƒ is a f.l. and z, z0, 21, • • • are numerals. 
An ascent is a sequence of numerical equations of the form 

ƒ(<>, 20, * ! , • • • ) = * ( 0 ) , ƒ ( ! , 20, * ! , - • • ) = *<*>, • • • , 

ƒ & 20, * ! , • • • ) = S«>, • • • . 

The supremum of the ascent (1) is the numeral for the least ordinal 
which is not smaller than any ordinal whose numeral is a right hand 
side of a member of the ascent (1). The term supx<y f(x, z0, Zi, • • • ) 
where x is any variable and y is the numeral for the length of (1), 
is said to correspond to (1). 

We have three rules of deduction (but no axioms) : 
(Ri) To pass from an equation e to an equation d resulting from e 

by a simultaneous substitution of numerals for free occurrences of 
variables. 

(R2) To pass from an equation r = s without free variables (the 
major premise) and a sequence of numerical equations (the minor 
premises) to an equation r = si, where si is obtained from 5 by simul­
taneously replacing in s each part, which is the same as the left hand 
side of one of the minor premises, by the corresponding right hand 
side. 

(R3) To pass from an equation r = s (the major premise) and a se­
quence T of ascents (the members of the members of T being the 
minor premises) to an equation r = $i, where Si arises from s by si­
multaneously replacing each term in s which corresponds to one of 
the ascents of T by the supremum of that ascent. 

(The Si in (R2) and (R3) are not uniquely determined, if some of the 
minor premises are "contradictory".) 
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We can now define deduction (in tree form) in analogy with [3]. 
A deduction may have infinitely many branches (however, less than 
fc$«) but each branch is finite in length. Also, in analogy with [3], 
we can define the notion the function <f> is o)a-recursive in the sequence 
of functions \[/0} \pu • • • , \p^ • • • . 

o)a-recursiveness is transitive in the sense of 

THEOREM 1. If {^r}?** is a sequence of functions such that <t>K is <j> 
and, for each V^K, either <f>v is one of the functions xf/^ (/x<X<a>a), or 
<j>v is Ma-recursive in {$Mj, }T<Pv, (IXVT<V for T<pv), then cj> is a)a~recursive 
in {^}„<x. (Cf. [3, p. 270].) 

If ^ is coa-recursive in an empty sequence of functions, we say that 
0 is an œa-recursive function. 

It can be shown that all functions commonly used in ordinal arith­
metic are o>a-recursive, if their arguments be restricted to ordinals (in 
our sense). 

A predicate S(xo, Xi, • • • ) over ordinals is œa-arithmetical if it is 
equivalent to a predicate of the form 

Qx • • • QnR(yiy • • • ,yn, *o, xu • • • ), 

where n is finite, Qk, (k^n), is either (yk) or (Eyk) and R is an œa 

recursive predicate, defined over ordinals. 
coo-recursiveness is the ordinary "classical" notion of recursiveness. 

Arithmetization of transfinite formalisms. From now on let a = 7 + 1 
be of the first kind and let the axiom of constructibility be assumed. 

For the purpose of arithmetization, we must be able to assign to 
each sequence of ordinals a single ordinal (a Gödel number) in a 
one-to-one way, so that the predicate Sq(x) (meaning: x is a Gödel 
number of some sequence) and the functions L(x) and M(x,y) 
(which, when Sq(x) holds, give the length and the ;yth member, re­
spectively, of the sequence whose Gödel number is x) be coa-recursive. 
This can, indeed, be done. 

Consider the case a= 1. 
Let {^}^<«i be the set of all real numbers, well ordered according 

to their order of generation by Gödel's F-function (for the definition 
of F see [ l]) . 

For each /3<coi there exist well orderings of type j3 of all natural 
numbers w</3. Among them let Wp= {w/3,s}s<0 be first in order of 
generation. 

Given a sequence Z = {ft} {<£ of ordinals, we let correspond to it the 
sequence i ?= {P^IK/S °f reals. Let 5 = {s/fc}jfc<min(«,!3, be the sequence 
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of reals such that snp^ = r^ for all £</3. To 5 we let correspond a 
single real s = rn. (This last correspondence is the one used in the well 
known proof of the equality c**° = c.) To the ordered pair (rj, j8) we 
let correspond the ordinal T = P ,(T7, j8). (For the definition of P see 
[i].) 

Now, 4>(s)=r is a one-one correspondence between the set of all 
sequences of ordinals and a certain set of ordinals. We call r the Gödel 
number of Z. 

A similar procedure is possible for any a of the first kind. The follow­
ing theorem can be proved : 

THEOREM 2. The predicate Sq(x) and the functions L(x) and M(x, y) 
are œa-recursive, and their recursive definitions can actually be given 
explicitly y provided we use single symbols f or œ and œa-i = o)y. 

We can now arithmetize our formalism and obtain analogues of the 
basic theorems of the theory of recursive functions (the enumeration 
and normal form theorems). However, no proper analogue seems to 
exist of the notion of primitive recursivity. 

A typical application to infinitistic calculi is: 

THEOREM 3. Let a be the first kind and let ^«a,«a be an infinitistic first 
order language (having a supply of predicate letters and \Aa individual 
variables. Negation, and conjunctions of sequences of wffs are allowed, 
as well as general quantification over sequences of free individual vari­
ables). Then the class of all satis fiable formulae of F„ fW is not o)a-
arithmetical. 

This implies a negative solution of a problem raised by Henkin (in 
the Warsaw Symposium, 1959) concerning the completeness of a set 
of axioms for F„lt„v However, our solution depends in an essential 
way on the axiom of constructibility. 
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