A CONTINUOUS FUNCTION WITH TWO CRITICAL POINTS

BY NICOLAAS H. KUIPER¹
Communicated by R. P. Boas, February 6, 1961

A real C^s -function $f: X \to \mathbb{R}$ on an n-dimensional C^s -manifold with $s \ge 0$, is called C^s -nondegenerate C^s -ordinary at a point $p \in X$, in case a system of n C^s -coordinates (C^s -functions) ϕ_1, \dots, ϕ_n exists, which defines a C^s -diffeomorphism κ of some neighborhood V(p) of p into \mathbb{R}^n , and such that for some constant $\lambda_p > 0$

$$(1)\phi_i(p) = 0, i = 1, \dots, n; \ \phi_n(q) = \lambda_p\{f(q) - f(p)\}$$
 for $q \in V(p) \subset X$.

If C^* -coordinates and $\lambda_p > 0$ exist such that

(2)
$$\phi_{i}(p) = 0, \qquad i = 1, \dots, n;$$
$$-\sum_{1}^{r} \phi_{i}^{2}(q) + \sum_{r+1}^{n} \phi_{j}^{2}(q) = \lambda_{p} \{ f(q) - f(p) \}$$

then the function is called C^s -critical of index r and C^s -nondegenerate at p.

A function which is C^s -nondegenerate at every point $p \in X$ is called a C^s -nondegenerate function.

We will restrict our considerations to the topological case s=0 of continuous functions on topological manifolds and we will omit C^0 from the notation in the sequel. By function we will mean continuous function, etc.

A compact manifold without boundary is called a *closed* manifold. A nondegenerate function on a closed manifold has at least one critical point p_1 of index n and one critical point p_0 of index 0, corresponding respectively with the maximum and the minimum of the function. We prove the

THEOREM. If X is a closed n-dimensional manifold and $f: X \rightarrow \mathbb{R}$ a continuous nondegenerate function with exactly two critical points, then X is homeomorphic to the n-sphere $S^{n,2}$

¹ The author has a research grant from the National Science Foundation, NSF-G-13989.

² Reeb [2] proved the corresponding theorem for the differentiable case. Morse [1] proved that X is a homotopy-sphere, and he also has a proof of the theorem we present (unpublished as yet).

PROOF. A. The local droppings T_p . We place ourselves in the assumptions of the theorem and we call the function f "height." We consider a coordinate system for every point $p \in X$, obeying (1) or (2), but for which moreover the image $\kappa_p(V(p)) \subset \mathbb{R}^n$ is the open n-ball

$$(3) r < 5,$$

where the "polar coordinates" r (radius) and ω (unit vector) are defined by

(4)
$$r = \left(\sum_{j=0}^{n} \phi_{j}^{2}\right)^{1/2}, \qquad \omega = (\phi_{1}/r, \phi_{2}/r, \cdots, \phi_{n}/r).$$

For any such coordinate system $\kappa: V(p) \to \mathbb{R}^n$ we also define the open set

$$(5) U_t(p) = \{q \mid q \in V(p) \subset X, r(q) < t\}.$$

Next we define a homeomorphism T_p for every $p \in X$. If p is an ordinary point then we proceed as follows:

Let h(t) be a real C^{∞} -function with the properties

(6)
$$h(t) \begin{cases} = 0, & |t| \ge 4, \\ > 0, & |t| < 4, \\ = h(0), & |t| \le 1, \\ |h'(t)| < 1/2, & \text{any } t. \end{cases}$$

The homeomorphism T_p is given by:

(7)
$$\phi_{i}(T_{p}(q)) = \phi_{i}(q), \quad i = 1, \dots, n-1 \\
\phi_{n}(T_{p}(q)) = \phi_{n}(q) - h(r(q))$$

$$T_{p}(q) = q, \quad q \in V(p).$$

As the Jacobian of the corresponding C^{∞} -transformation of the coordinates for $q \in V(p)$ does not vanish, and T(q) = q for $q \notin U_4(p)$, it follows that T_p is a global homeomorphism of X. Observe that the continuous function

$$q \rightarrow f(T_p(q)) - f(q) \colon X \rightarrow \mathbf{R}$$

takes the value zero for $q \in U_4(p)$ and is negative for $q \in U_4(p)$. It takes a negative maximal value on the set $\overline{U_3(p)}$, the closure in X of $U_3(p)$. Under T_p no point is mapped into a higher level of f, and every point of $U_4(p)$ is mapped into a lower level.

If p is a critical point of index n we use a real C^{∞} -function k(t) with the properties

(8)
$$k(t) \begin{cases} = t, & \text{for } t \ge 4, \\ = 2t, & 0 \le t \le 1, \\ > t, & 0 \le t < 4, \end{cases}$$
$$k'(t) > 0, \qquad t \ge 0.$$

The homeomorphism T_p is now defined in terms of polar coordinates (4) by:

(9)
$$\begin{aligned} \omega(T_p(q)) &= \omega(q) \\ r(T_p(q)) &= k(r(q)) \end{aligned} \end{aligned} \quad \text{for } q \in V(p),$$

$$T_p(q) &= q \quad \text{for } q \notin V(p).$$

The restriction of T_p to $U_1(p)$ is represented by a geometrical multiplication with factor 2 in coordinate space.

The point p and every point $q \in U_4(p)$ is invariant under T_p . Every other point in X is mapped into a lower level.

In the case of *critical point of index zero* we use the function k^{-1} , the inverse of k, and proceed analogously.

B. The global dropping T. Under the given assumptions there is a critical point p_1 of index n (maximum), a critical point p_0 of index 0 (minimum), and no other critical point. Choose a finite number of coordinate systems κ_{p_i} and homeomorphisms T_{p_i} , $i=0, \dots, L$, of the kinds mentioned above, such that:

$$\bigcup_{i=0}^{L} U_3(p_i) = X$$

but

(10)
$$\bigcup_{i=2}^{L} U_4(p_i) \cap \left[U_2(p_0) \cup U_2(p_1) \right] = \emptyset \text{ (void)}.$$

(Compare the use of a partition of unity.)

Let

$$(11) T = T_{p_L} T_{p_{L-1}} \cdot \cdot \cdot T_{p_2} T_{p_1} T_{p_0}.$$

Then $T: X \rightarrow X$ is a global homeomorphism with exactly two invariant points, namely p_0 and p_1 , which maps every other point into a lower level:

(12)
$$T(p_0) = p_0$$
; $T(p_1) = p_1$; $f(T(q)) \le f(q)$ for $q \in X - p_0 - p_1$.

As the set $W_{\epsilon} = X - U_2(p_1) - U_{\epsilon}(p_0)$ for $0 < \epsilon < 1$, is compact, the non-negative function

$$f(q) - f(T(q))$$

has a minimal value for $q \in W_{\epsilon}$ and this minimal value is positive. Call it $\delta_{\epsilon} > 0$ and let N_{ϵ} be an integer such that

(13)
$$N_{\epsilon}\delta_{\epsilon} > f(p_1) - f(p_0).$$

If we apply powers with consecutive exponents of the homeomorphism T, to any point $q \in W_{\epsilon}$, then for some exponent $N \leq N_{\epsilon}$ we will find

$$T^N(q) \in U_{\epsilon}(p_0)$$

because with each new application of T to the result obtained in the last step, we obtain a new point which is at a level at least δ_{ϵ} lower, and after N_{ϵ} steps the point would have dropped totally more than the total range of the function f over X. On the other hand, once the resulting point is in $U_{\epsilon}(p_0)$ any further application of T will give a new point also in $U_{\epsilon}(p_0)$, because T acts in $U_{\epsilon}(p_0)$ as a geometrical multiplication with factor 1/2. Consequently

$$(14) T^{N_{\epsilon}}(X - U_{2}(p_{1})) \subset U_{\epsilon}(p_{0})$$

and taking complements

(14)c
$$T^{N_{\epsilon}}(U_2(p_1)) \supset X - U_{\epsilon}(p_0).$$

Thus X is covered by two discs:

$$(15) T^{N_{\epsilon}}(U_2(p_1)) \cup U_{\epsilon}(p_0) = X$$

and our theorem can be considered as a consequence of a theorem of Morton Brown. However, we like to present a complete explicit proof:

C. The homeomorphism $X \rightarrow S^n$.

As (14) holds for any $0 < \epsilon < 1$, it follows that for any $q \neq p_0$ there exists a smallest number N_q such that

$$T^{N'}U_2(p_1) \ni q$$
 for $N' \ge N_q$

or

$$(16) T^{-N'}(q) \subseteq U_2(p_1).$$

Let $\kappa_1: U_2(p_1) \to \mathbb{R}^n$ be the restriction of the coordinate system at the critical point p_1 to the open set $U_2(p_1)$. Observe that for any $q \in U_2(p_1)$:

$$(17) 2^k \cdot \kappa_1 \big[T^{-k}(q) \big] = \kappa_1(q), k \ge 0.$$

If $N' \ge N = N_q$ then in view of (17) we have in the vector space \mathbb{R}^n :

$$2^{N'}\kappa_1[T^{-N'}(q) = 2^N \cdot 2^{N'-N}k_1(T^{-N'+N}T^{-N}q) = 2^N\kappa_1(T^{-N}q).$$

Hence there exists a mapping $\kappa: (X - p_0) \to \mathbb{R}^n$ well defined by:

(18)
$$\kappa(q) = 2^{N'} \kappa_1(T^{-N'}q), \qquad N' \ge N_q.$$

 κ is clearly locally a homeomorphism. κ is onto the set $\bigcup_{j=0}^{\infty} 2^{j} \kappa_{1}(U_{2}(p_{1})) = \mathbb{R}^{n}$. If q_{1} and $q_{2} \neq q_{1}$ are both different from p_{0} then, for $N' \geq N_{q_{1}} + N_{q_{2}}$,

$$T^{-N'}(q_1) \neq T^{-N'}(q_2)$$

and consequently $\kappa(q_1) \neq \kappa(q_2)$. So $\kappa: (X - p_0) \to \mathbb{R}^n$ is a homeomorphism and X is homeomorphic to the one point compactification of \mathbb{R}^n , that is S^n .

BIBLIOGRAPHY

- 1. Marston Morse, Topologically non-degenerate functions on a compact n-manifold M, J. Analyse Math. vol. 7 (1959) pp. 189-208.
- 2. G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Actualités Sci. Ind. No. 1183 (1952) pp. 91-154.

Landbouwhogeschool, Wageningen, Netherlands and Northwestern University