DERIVATIONS OF COMMUTATIVE BANACH ALGEBRAS

BY PHILIP C. CURTIS, JR. ¹
Communicated by John W. Green, January 11, 1961

In [2] Singer and Wermer showed that a bounded derivation in a commutative Banach algebra $\mathfrak A$ necessarily maps $\mathfrak A$ into the radical $\mathfrak R$. They conjectured at this time that the assumption of boundedness could be dropped. It is a corollary of results proved below that if $\mathfrak A$ is in addition regular and semi-simple, this is indeed the case.

What is actually proved here is that under the above hypotheses, if D is a derivation of $\mathfrak A$ into $C(\Phi_{\mathfrak A})$, $^2\Phi_{\mathfrak A}$ the structure space of $\mathfrak A$, then D is a bounded operator from $\mathfrak A$ to $C(\Phi_{\mathfrak A})$. The topologies are the norm topology in $\mathfrak A$ and the sup norm topology in $C(\Phi_{\mathfrak A})$. An application of the closed graph theorem shows that if D maps $\mathfrak A$ into itself, D must be a bounded operator in $\mathfrak A$, hence by the Singer, Wermer theorem, D=0.

If $\mathfrak A$ is regular but not semi-simple, then it follows from the above that D will map $\mathfrak A$ into $\mathfrak R$ provided that D maps $\mathfrak R$ into $\mathfrak R$. This the author can verify only if $\mathfrak R$ is nilpotent.

In what follows $\mathfrak A$ will always denote a regular, commutative, semi-simple Banach algebra with norm $\|\cdot\|$. Applying the Gelfand isomorphism we will identify $\mathfrak A$ and the corresponding subalgebra of $C(\Phi_{\mathfrak A})$. For convenience we also will assume $\mathfrak A$ possesses an identity. It is easily seen that this doesn't affect the generality of the results.

Let \mathfrak{M}_{ϕ} be a maximal ideal of \mathfrak{A} , and ϕ the corresponding point in $\Phi_{\mathfrak{A}}$. It is noted in [2] that there exists a derivation D of \mathfrak{A} into some semi-simple extension \mathfrak{B} of \mathfrak{A} iff $\mathfrak{M}_{\phi}^2 \neq \mathfrak{M}_{\phi}$ for some maximal ideal \mathfrak{M}_{ϕ} . In fact \mathfrak{B} may be taken to be $B(\Phi_{\mathfrak{A}})$, the ring of bounded complex functions on $\Phi_{\mathfrak{A}}$. For if this condition is satisfied, following Singer and Wermer, we define by Zorn's Lemma a nontrivial linear functional f_{ϕ} on \mathfrak{A} which annihilates \mathfrak{M}_{ϕ}^2 and the identity. If we define D by

$$Dx(\phi') = 0, \quad \phi' \in \Phi_{\mathfrak{A}}, \quad \phi' \neq \phi, \qquad x \in \mathfrak{A},$$

 $Dx(\phi) = f_{\phi}(x),$

it is easily seen that D is a derivation of \mathfrak{A} into $B(\Phi_{\mathfrak{A}})$. D is in general unbounded, but if $\mathfrak{M}_{\phi}^2 \neq \mathfrak{M}_{\phi}$, f_{ϕ} , and consequently D, may be chosen (via the Hahn-Banach Theorem) to be bounded. Modifying the

¹ This research was supported by the United States Air Force, Office of Scientific Research, under contract AF49(638)-859.

² $C(\Phi_{\mathfrak{A}})$ denotes the algebra of continuous complex functions on the space $\Phi_{\mathfrak{A}}$.

terminology of Singer and Wermer somewhat we refer to both the functionals f_{ϕ} and the associated operators D as point derivations. The main result of this note is that any derivation D of $\mathfrak A$ into $B(\Phi_{\mathfrak A})$ is the sum of a bounded derivation and finitely many unbounded point derivations.

The key to the argument is the following result from [1, §3] stated in a form suitable to our needs.

THEOREM 1. Let $\|\cdot\|_1$ be a norm on $\mathfrak A$ under which $\mathfrak A$ is a normed algebra. Let $\mathfrak G$ be the class of open sets G for which there exist constants $M_{\mathfrak G}$ satisfying

$$||x||_1 \leq M_G ||x||, \quad x \in \mathfrak{A}; \quad c(x) \subset G^3$$

Then there exists a finite subset F of $\Phi_{\mathfrak{A}}$, called the singularity set of the norm $\|\cdot\|_1$, with the following two properties:

- (1) If G is open and $\overline{G} \cap F = \emptyset$, then $G \in \mathfrak{S}$.
- (2) If $G \in \mathcal{G}$, then $G \cap F = \emptyset$.

We now state and prove the result of the note.

THEOREM 2. Let D be a derivation of \mathfrak{A} into $B(\Phi_{\mathfrak{A}})$. Then there exists a finite subset F of $\Phi_{\mathfrak{A}}$ and a bounded derivation D_1 of \mathfrak{A} into $B(\Phi_{\mathfrak{A}})$ such that if $D_2 = D - D_1$, then $D_2 x(\phi) = 0$, $x \in \mathfrak{A}$ and $\phi \in \Phi_{\mathfrak{A}} - F$. For $\phi \in F$, $f_{\phi}(x) \equiv D_2 x(\phi)$ is an unbounded point derivation. If for each $x \in \mathfrak{A}$, $Dx \in C(\Phi_{\mathfrak{A}})$, then $F = \emptyset$ and D is a bounded operator.

PROOF. Re-norm $\mathfrak A$ by defining for $x \in \mathfrak A$ $||x||_1 = ||x|| + ||Dx||_{\infty}$ where $\|y\|_{\infty} = \sup_{\phi \in \Phi_{\mathfrak{A}}} |y(\phi)|$. Clearly \mathfrak{A} is a normed algebra under $\|\cdot\|_1$. Therefore if F is the singularity set for $\|\cdot\|_1$, we assert $f_{\phi}(x) \equiv Dx(\phi)$ is a bounded linear functional on $\mathfrak A$ iff $\phi \in F$. If $\phi \in F$, then by the regularity of \mathfrak{A} there exists $h_{\phi} \in \mathfrak{A}$ and a neighborhood V of F such that $h_{\phi}(\phi) = 1$, $h_{\phi}(V) = 0$. Let $\Im_V = \{x \in \mathfrak{A} : x(V) = 0\}$. Choose an open set W, $\overline{W} \cap F = \emptyset$ such that if $x \in \mathfrak{J}_V$, then $c(x) \subset W$. Then by Theorem 1, D is bounded on \Im_{V} . Hence if $\{x_n\}$ is any sequence in $\mathfrak A$ tending to zero, then $x_n h_{\phi} \in \Im_V$ and $x_n h_{\phi} \to 0$. Consequently $D(x_n h_{\phi}) \to 0$. But $D(x_n h_\phi)(\phi) = Dx_n(\phi) + x_n(\phi) \cdot Dh_\phi(\phi)$. Therefore $f_\phi(x_n) \equiv Dx_n(\phi) \rightarrow 0$. For the converse let $H = \{\phi : f_{\phi} \text{ is bounded on } \mathfrak{A}\}$. Since $||Dx||_{\infty} < \infty$ for each $x \in \mathcal{X}$, there exists by the principle of uniform boundedness, a constant M such that $\sup_{\phi \in H} |Dx(\phi)| \leq M||x||$. If $\phi_0 \in H \cap F$, pick an open set $G \subset H$, $\phi_0 \in G$ and an element $y \in \mathfrak{A}$ for which y(G) = 1 and $y(\Phi_{\mathfrak{A}}-H)=0$. Then if $x\in\mathfrak{A}$ and $c(x)\subset G$, we have xy=x. Therefore Dx = yDx + xDy and

 $^{^{3}}$ c(x) denotes the carrier of the function x.

$$||Dx||_{\infty} \leq \sup_{\phi \in H} |y(\phi) \cdot Dx(\phi)| + ||x|| \cdot ||Dy||_{\infty}$$

$$\leq \{||y||_{\infty} \cdot M + ||Dy||_{\infty}\}||x||.$$

This contradicts property (2) of Theorem 1.

If $F \neq \emptyset$ and D is unbounded, we define D_1 by

$$D_1 x(\phi) = D x(\phi),$$
 $\phi \notin F,$
= 0, $\phi \in F.$

Again applying the uniform boundedness principle it follows that D_1 is a bounded operator from \mathfrak{A} to $B(\Phi_{\mathfrak{A}})$. The statement about D_2 is clear.

To complete the proof we observe first that if ϕ is isolated in $\Phi_{\mathfrak{A}}$, then $\phi \in F$. In fact for such ϕ , $Dx(\phi) = 0$. For let k_{ϕ} be the characteristic function of $\{\phi\}$. Then $k_{\phi} \in \mathfrak{A}$ and for $x \in \mathfrak{A}$ $D(k_{\phi}x)(\phi) = 0$. Hence $Dx(\phi) = -x(\phi) \cdot Dk_{\phi}(\phi) = 0$. Consequently $\overline{\Phi_{\mathfrak{A}} - F} = \Phi_{\mathfrak{A}}$. Therefore if for each $x \in \mathfrak{A}$, Dx is a continuous function on $\Phi_{\mathfrak{A}}$, it follows that $||Dx||_{\infty} = \sup_{\phi \in \Phi_{\mathfrak{A}} - F} |Dx(\phi)| \leq M||x||$. This completes the proof.

COROLLARY. Let \mathfrak{B} be a subalgebra of $C(\Phi_{\mathfrak{A}})$ containing \mathfrak{A} . If \mathfrak{B} is a Banach algebra under some norm and D is a derivation of \mathfrak{A} into \mathfrak{B} , then D is a bounded operator. If D maps \mathfrak{A} into itself, then $D \equiv 0$.

PROOF. The first result follows by the closed graph theorem. An application of the theorem of Singer and Wermer [2] then yields the second.

If now $\mathfrak A$ is not semi-simple and D maps $\mathfrak A$ into itself, then one may factor out the radical and apply the above corollary to prove that D maps $\mathfrak A$ into $\mathfrak A$ provided that D maps $\mathfrak A$ into $\mathfrak A$. If $\mathfrak A$ is nilpotent, this follows. For if $x^n=0$, then $0=D^nx^n=n!(Dx)^n+\text{terms}$ each of which involves a positive power of x, hence belongs to the radical. Therefore $(Dx)^n \in R$, and consequently $Dx \in R$.

The validity of this result for non-nilpotent radicals is unknown to the author. Without some topological assumptions the result is of course false. Ordinary differentiation in the ring of formal power series is a derivation which does not map the radical into itself.

BIBLIOGRAPHY

- 1. W. G. Bade and P. C. Curtis, Jr., Homomorphisms of commutative Banach algebras, Amer. J. Math. vol. 82 (1960) pp. 589-608.
- 2. I. M. Singer and J. Wermer, *Derivations on commutative normed algebras*, Math. Ann. vol. 129 (1955) pp. 260-264.

University of California, Los Angeles