2. ———, Sur le théorème de Levy-Cramér, Publ. Inst. Statist. Univ. Paris vol. 6 (1957) pp. 213-225.
3. R. G. Laha, On functions having non-negative derivatives at the origin, Proc. Amer. Math. Soc., to appear.
4. Yu. V. Linnik, $A$ problem on characteristic functions of probability distributions, (Russian) Uspehi. Mat. Nauk. vol. 10 (1955) pp. 137-138.
5. L. V. Mamay, On the theory of characteristic functions, (Russian) Vestnik Leningrad Univ. vol. 15 (1960) pp. 85-99.
6. D. A. Raikov, On the decomposition of Gauss and Poisson laws, (Russian) Izv. Akad. Nauk SSSR. Ser. Mat. vol. 2 (1938) pp. 91-124.

The Catholic University of America

## SUMMABILITY (L) OF FOURIER SERIES

## FU CHENG HSIANG

Communicated by S. Bochner, September 28, 1960

1. In a recent paper, Borwein [1] has constructed a new method of summability for an infinite sequence ( $S_{n}$ ). He defined a sequence $\left(S_{n}\right)$ to be summable by the logarithmic method of summability or summable ( $L$ ) to the sum $s$ if, for $x$ in the interval $(0,1)$

$$
\lim _{x \rightarrow 1-0} \frac{1}{|\log (1-x)|} \sum_{n=1}^{\infty} \frac{S_{n}}{n} x^{n}=s
$$

which is written simply as $S_{n} \rightarrow s(L)$. Concerning this kind of summability, Borwein has established a number of fundamental facts. For instance, he showed that $(L) \supset(A, \lambda) .{ }^{1}$ Thus, we have the following full inclusive relation:

$$
(L) \supset(A, \lambda) \supseteq(A) \supset(C, r),
$$

for any $r>-1$, where $(A)$ is the ordinary Abel's summability and $(C, r)$ is the Cesàro summability of order $r$.

In this note, the author intends to apply this new method of summability to the Fourier series of $f(x)$ in order to obtain a corresponding summability criterion for it.

[^0]2. Suppose that $f(x)$ is a Lebesgue integrable function, periodic with period $2 \pi$. Let
$$
f(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$
be its Fourier series. Fixing $x_{0}$, we write
$$
\phi(t)=\phi_{x_{0}}(t)=\frac{1}{2}\left\{f\left(x_{0}+t\right)+f\left(x_{0}-t\right)-2 s\right\} .
$$

First, we derive the following fundamental theorem concerning the kernel of the summability ( $L$ ) for Fourier series.
Theorem 1. The necessary and sufficient condition for the Fourier series of $f(x)$ to be summable ( $L$ ) to the sum sat the point $x_{0}$ is that

$$
\int_{0}^{\pi} \frac{\phi(t)}{t} \tan ^{-1} \frac{x \sin t}{1-x \cos t} d t=o(|\log (1-x)|)
$$

as $x \rightarrow 1-0$.
Let

$$
S_{n}\left(x_{0}\right)=\frac{1}{2} a_{0}+\sum_{\nu=1}^{n}\left(a_{v} \cos \nu x_{0}+b_{v} \sin \nu x_{0}\right)
$$

be the $n$th partial sum of the Fourier series of $f(x)$ at $x_{0}$. Then, we have

$$
S_{n}\left(x_{0}\right)-s=\frac{1}{\pi} \int_{0}^{\pi} \phi(t) \frac{\sin n t}{t} d t+o(1) .
$$

Thus,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n}\left\{S_{n}\left(x_{0}\right)\right. & -s\} x^{n} \\
& =\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{x^{n}}{n} \int_{0}^{\pi} \phi(t) \frac{\sin n t}{t} d t+o\left(\sum_{n=1}^{\infty} \frac{x^{n}}{n}\right) \\
& =\frac{1}{\pi} \int_{0}^{\pi} \frac{\phi(t)}{t}\left(\sum_{n=1}^{\infty} \frac{\sin n t}{n} x^{n}\right) d t+o(|\log (1-x)|) \\
& =\frac{1}{\pi} \int_{0}^{\pi} \frac{\phi(t)}{t} \tan ^{-1} \frac{x \sin t}{1-x \cos t} d t+o(|\log (1-x)|) .
\end{aligned}
$$

Now,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n}\left\{S_{n}\left(x_{0}\right)-s\right\} x^{n} & =\sum_{n=1}^{\infty} \frac{S_{n}\left(x_{0}\right)}{n} x^{n}-s|\log (1-x)| \\
& =L(x)-s|\log (1-x)|
\end{aligned}
$$

Hence, the sequence $\left(S_{n}\left(x_{0}\right)\right)$ is summable ( $L$ ) to $s$ if and only if

$$
\int_{0}^{\pi} \frac{\phi(t)}{t} \tan ^{-1} \frac{x \sin t}{1-x \cos t} d t=o(|\log (1-x)|)
$$

as $x \rightarrow 1-0$. This establishes the theorem.
3. Next, we derive a summability criterion of $(L)$ summability for the Fourier series of $f(x)$ at $x_{0}$ as follows.

Theorem 2. If
(i)

$$
\int_{0}^{t}|\phi(u)| d u=o(t|\log t|), \quad(t \rightarrow+0)
$$

(ii)

$$
\int_{t}^{\delta}(|\phi(u)| / u) d u=o(|\log t|)
$$

as $t \rightarrow+0$ for any arbitrary $0<\delta<\pi$, then the Fourier series of $f(x)$ is summable ( $L$ ) to s at $x_{0}$.

For, if we write

$$
\begin{aligned}
\int_{0}^{\pi} \frac{\phi(t)}{t} \tan ^{-1} \frac{x \sin t}{1-x \cos t} d t & =\int_{0}^{1-x}+\int_{1-x}^{\delta}+\int_{\delta}^{\pi} \\
& =J_{1}(x)+J_{2}(x)+J_{3}(x)
\end{aligned}
$$

say. Then, since

$$
\lim _{t \rightarrow+0} \frac{1}{t} \tan ^{-1} \frac{x \sin t}{1-x \cos t}=\frac{x}{1-x}
$$

we can choose $x_{0}$ sufficiently near 1 such that

$$
\left|J_{1}(x)\right|<\frac{2 x}{1-x} \int_{0}^{1-x}|\phi| d t
$$

for $0<x_{0}<x<1$. It follows that $J_{1}(x)=o(|\log (1-x)|)$ as $x \rightarrow 1-0$ by (i). Considering that

$$
\left|\tan ^{-1} \frac{x \sin t}{1-x \cos t}\right|<\frac{\pi}{2}
$$

uniformly for $0 \leqq x<1$ and $0<t \leqq \pi$, we find

$$
\left|J_{2}(x)\right|<\frac{\pi}{2} \int_{1-x}^{8} \frac{|\phi|}{t} d t=o(|\log (1-x)|)
$$

as $x \rightarrow 1-0$ by (ii). Last, we have

$$
\begin{aligned}
\left|J_{3}(x)\right| & =\left|\int_{8}^{\pi} \frac{\phi}{t} \tan ^{-1} \frac{x \sin t}{1-x \cos t} d t\right| \\
& \leqq \frac{1}{\delta} \int_{8}^{\pi}|\phi|\left|\tan ^{-1} \frac{x \sin t}{1-x \cos t}\right| d t \\
& <\frac{\pi}{2 \delta} \int_{0}^{\pi}|\phi| d t \\
& =O(1) \\
& =o(|\log (1-x)|)
\end{aligned}
$$

as $x \rightarrow 1-0$. This proves Theorem 2.
4. Accordingly, from the estimation of $J_{3}(x)$ in the proof of the above theorem, we get the following almost self-evident

Theorem 3. The (L) summability of the Fourier series of $f(x)$ at $x_{0}$ is a local property of $f(x)$ near $x_{0}$. I.e.,

$$
L(x)=\frac{1}{\pi} \int_{0}^{\delta} \frac{\phi(t)}{t} \tan ^{-1} \frac{x \sin t}{1-x \cos t} d t+o(|\log (1-x)|)
$$

for any arbitrary $0<\delta<\pi$ as $x \rightarrow 1-0$.

## Reference

1. D. Borwein, A logarithmic method of summability, J. London Math. Soc. vol. 33 (1958) pp. 212-220.

National Taiwan University


[^0]:    ${ }^{1}$ A sequence $\left(S_{n}\right)$ is said to be summable $(A, \lambda)$ to the sum $s$ if $(1-x) \sum S_{n}^{\lambda} x_{n} \rightarrow s$ as $x \rightarrow 1-0$, where $S_{n}^{\lambda}$ is the $n$th Cesàro mean of order $\lambda$ of $\left(S_{n}\right)$ [1, p. 212 and §3, Theorem 3].

