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In a previous paper [2], we studied the w-dimensional form of the 
functions of Little wood-Paley and Lusin. These were defined as fol­
lows. Let / (x )£Z>(£„) , En is Euclidean w-space, of variables 
x, y y ' • • , x=(xi, x2, • • • , xn); let U(x, t), t>0, be the Poisson inte­
gral of ƒ. Let 

* ( * ) - ( ƒ " t\ VU\2dt\ and S(*) = ( f f tl~n \ VU\2dtdy 

Here 

1 */dU\2 

| V £ / | 2 = Z ( — ) , *o = /; 
i-o \d**/ 

TF(x) is the cone {(y, t):\x — y\ <at}. We proved 

a) **ii/iip^y ^ M U K # < -, 
with a similar result for 5. 

We wish now to consider a related function of Little wood-Paley 
and Zygmund. We define its w-dimensional version as follows. Let 
0 <X, and set 

a» « * ^x+i \ 1/2 

We note first 

g{x) g 45(«) ^ Bxgt(x). 

The first part of this inequality is Lemma 9 of [2], and the second 
part is trivial. We note also that g*t(x) èg$2(x), if X2^Xi. We shall see 
that the behavior of g* when \>n is similar to that of the simpler 
functions g and S. Hence our primary concern will be with g* when 
0 < X ^ w . We outline the proof of the following theorem. 

THEOREM. Let 0 < X ^ w , and 2n/Çk+n) <p<*>. Then 

\\gf\\p ^ ^p.x||/||p> AP* independent off. 
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REMARKS, (i) For the one-dimensional periodic case see Zygmund 
[5]; for the nonperiodic case see Waterman [4], The proofs given 
there are based on complex methods, which of course are unavailable 
in higher dimensions. 

(ii) The result stated here is essentially the best possible: there 
exists an / G L 1 so that g*0*0 = oo, almost everywhere; also if 0 <X <n, 
and p<2n/ÇK+n), there exists an ƒ £ ! > , so that g*0*0 = °° » a.e. 

The proof follows a series of steps. 

LEMMA 1. If 0 <X, 2^p<<x>, then 

||gx*|| â AMI*-
In fact 

" « * - SUP ƒ ( 1 , - y ^ + i » ) ^ / . I ™\*4,(X)dXdydt, 

the sup is taken over all # ^ 0 , ||#||r^S 1, where r is the index conjugate 
to p/2. However, 

—; ; 6(x)dx 

( h - j | 2 + ^2)(w+X)/2 

^ A s u p r n I <t>(y - x)dx = AM(<j>)(y). 
f>0 J \x\zt 

Therefore by Fubini's theorem, 

\\g.*\\l =S A ƒ g\y)M{<f){y)dy g 4U| |* | | jM| r ^ B\\f\\l 

Here we have used inequality (1), and a well-known inequality con­
cerning the "maximal function" M(<t>). 

LEMMA 2. Let w<X, then the operation f—*g* is of weak type (1, 1). 

The proof of this lemma is based on the same ideas as the analogous 
Lemma 12 of [2], for the functions g and S. 

LEMMA 3. Let n <X, then 

M , ^ il,.x||/||„ K #<<*>. 

This follows from a combination of Lemma 1 (when n <X), Lemma 
2 and the Marcinkiewicz interpolation theorem. 

We can now prove the theorem. Let 4>(x, y, t) = 0 = (<£0, <f>u ' • • » <£n) 
be a vector-valued function so that JQJBU\4>(XI ?> 0|2dy<ft^l, all x, 
but let <£ be arbitrary otherwise. Let 
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Then Tx is a family of linear operators depending analytically on X, 
and satisfying 

(2) || TVCflH, £ A,M„ 2 £ ƒ> < =0, R(\) = X„ > 0, 

(3) ||2x0)11» ̂  ^.xJI/IL K * < «, i?(X) = Xi > ». 
The bounds APt\0 and -4P,xi are independent of #. We may now 

apply the convexity theorem of [ l ] and interpolate between (2) and 
(3). The result is ||rxC/)||p^B, ix||/||,> if 2»/(X+») <p<*. BPtX is in­
dependent of </>. Taking the sup over <j> proves the theorem. 

We shall now remark briefly on the applications of the functions 
g, 5, and g$. The function g is basic in the Littlewood-Paley theory of 
Fourier series (see e.g. [7, Chapter IS]). The w-dimensional extension 
of these results is as yet unknown. The function S is decisive in the 
behavior of harmonic functions near the boundary; the w-dimensional 
results have recently been obtained; see [3]. An application of the 
function g* is one variable is given in [ó]. In the following paper we 
shall apply the w-dimensional results to the characterization of certain 
classes of functions arising by "fractional integration.n 
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