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On October IS, 1959, Leopold Fejér died in Budapest, Hungary. 
For the past half century Fejér was a central figure of the interna­
tional mathematical community and a leading personality of his 
native country. He had many pupils scattered all over the world and 
many friends and admirers in all countries where mathematics is at 
home. His profound influence was due not only to his deep and funda­
mental contributions to various chapters of Analysis, but also to the 
simplicity and elegance of his presentation, and last but not least, 
to his charming and suggestive personality. His loss is deplored by 
many mathematicians, a considerable number of them in this coun­
try. He visited the U. S. in 1933 in response to an invitation by the 
Century of Progress Exposition in Chicago and the American Asso­
ciation for the Advancement of Science. As a visiting lecturer of the 
Society he was the guest of more than 15 colleges and universities, 
all of them east of the Mississippi. Brown University conferred an 
honorary doctorate on him. During his long mathematical and aca­
demic career Fejér received many honors and distinctions. He was a 
member of the Hungarian Academy of Sciences, corresponding mem­
ber of the Academies of Göttingen and München and of the Polish 
Academy of Sciences. He was honorary member of the Calcutta 
Mathematical Society, honorary doctor of the University of Buda­
pest, and received the Kossuth prize and other distinctions in Hun­
gary. He was a vice-president of the International Congress held in 
Cambridge, England, in 1912, and a member of the editorial boards 
of the Rendiconti del Circolo Matematico di Palermo and of the 
Mathematische Zeitschrift. 

Fejér was born in 1880 in Pecs, Hungary. After completion of the 
secondary school in Pecs, he participated in the Eötvös-competition 
of the Hungarian Mathematical Society (initiated in 1894) and won 
the second prize. He studied in Budapest from 1897 until he received 
his Ph.D. degree in 1902 with his discovery of the Cesàro summabil-
ity of Fourier series, a result which became a classical piece of Analy­
sis. He spent the academic year 1899-1900 in Berlin where he came 
in contact with Hermann Amandus Schwarz. In the famous seminar 
conducted by this eminent mathematician he met for the first time 
C. Carathéodory and E. Schmidt, and later E. Landau and I. Schur, 
acquaintances which became the source of life long sympathies, 
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warm friendships and fruitful scientific collaboration. Schwarz exer­
cized a deep influence on Fejér's mathematical thinking; his interest 
in Fourier series and in the logarithmic potential probably dates 
from this time. Also the geometrical approach to mathematics and 
the emphasis on extremum properties became lasting effects of his 
contact with Schwarz. In 1902-1903 further visits followed to Göt-
tingen and Paris, and in subsequent years Fejér was a frequent 
visitor in Germany, mainly in Göttingen and Berlin. His work as an 
academic teacher started at the University of Budapest in 1903. In 
1905 he became assistant at the University of Kolozsvâr ( = Klausen-
burg = Cluj) where he collaborated with L. Schlesinger and obtained 
the venia legendi. In 1911 he was appointed full professor at the Uni­
versity of Budapest and remained in Hungary, except for short visits 
to foreign places, for the rest of his life, in spite of the cruel sufferings 
which the diverse political turbulences of this country inflicted on 
him almost continuously ever since 1914. 

Fejér was active in that direction of Analysis which was prevalent 
in the first half of our century. His contributions to Fourier series 
opened up a new chapter in this field and were used in the work of 
such prominent mathematicians as Hurwitz, Lebesgue, de la Vallée-
Poussin, Hardy, Gronwall, and Bohr. The wonderful unity of his 
mathematical work can be best illustrated by observing that the 
regular behavior of the Cesàro means (Fejér means) of the Fourier 
series is ultimately due to the positivity of the Fejér kernel. A similar 
property is the key to the summability of second order of the Laplace 
series, and as a matter of fact also to the regular behavior of the step 
parabolas which Fejér introduced in the theory of interpolation (see 
below). Thus this search for positive kernels (in the wider sense of 
the word) became a sort of Leitmotiv of his mathematical efforts. 

Limitations of space do not permit details about Fejér's colorful 
and many-sided accomplishments. I restrict myself to a few particu­
larly outstanding results. Also the Bibliography is by no means com­
plete (Fejér published a total of 106 papers) ; it includes a few papers 
pertaining to the topics discussed here and a few other items con­
nected with his work. 

1. Cesàro summability of Fourier and Laplace series. Let f (6) be 
a continuous function periodic with period 27r, 

f(fi) ~ a0 + 2 X) (fln cos nd + bn sin nd), an + ibn = — I f(t)eintdt, 
w=i 2TJ — T 

its Fourier series. I t is well known that the partial sums 



348 GABOR SZEGÖ [September 

Sn(0) = a0 + 2^2 (av cos vd + bv sin vB) 

(1) 

1 rT 

2WJ-T 

sin(2/z + 1) 
t-0 

t-6 
-dt 

sm-

display in general a rather irregular behavior as n—> oo. There exist 
examples of f(0) for which at certain points the sequence 
{s»(0); w = 0, 1, 2, • • • } oscillates between — oo and +<*>. (Fejér 
himself constructed particularly simple and elegant examples of this 
phenomenon using a method which is applicable also in other cases; 
cf. [10, Chapter VIII] .) In 1900 Fejér [ l ] discovered that the Cesàro 
means of the partial sums, that is the expressions 

(TniP) 
so(6) + si(6) + - - • + Sn(0) 

n+ 1 
display a strikingly simpler behavior: First, for all values of 0 and n 
they remain between the minimum and maximum of the function 
f(0) and second, they tend, as n—*°o, to ƒ(#), even uniformly for all 0. 
These facts are based principally on the representation 

t-0 ' 

(2) o»(0) 
1 x Ç* 

sin(w + 1) 

sm-

dt 

in which the "Fejér kernelw appears the first time. It is non-negative 
in contrast to the "Dirichlet kernel" of sn(0) which changes sign an 
increasing number of times as n increases. 

Let ƒ be a continuous point function on the unit sphere, and 

its Laplace series, that is, Yn is a surface harmonic of degree n. Then 
the Cesàro means of second order display the same regular behavior 
as the Cesàro means of the first order do for the Fourier series. 

Both of these results initiated an entirely new point of view in the 
treatment of these expansions and of similar orthogonal expansions 
important for Mathematical Physics. They represent a great success 
for the concept of summability as applied to series of functions. Con-
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cerning the numerous implications for trigonometric series we refer 
to the treatise of Zygmund [lO]. Sturm-Liouville expansions, expan­
sions in terms of orthogonal polynomials, and the theory of almost 
periodic functions have likewise profited from this idea. 

2. Interpolation in the real and complex domain, (a) Fejér's inter­
est in interpolation went back to 1913. The first instance of the "step 
parabolas" appears in the form of trigonometric interpolation as fol­
lows. In analogy to the Dirichlet integral (1) we form the trigono­
metric polynomial of degree n 

ev-e 
sin(2rc + 1) 

Sn(P) = 
1 

2 ^ + 1 _. 
S/W ev-e 

ev = 
2n+ 1 

sin-

characterized by the interpolation conditions ,SW(0„) =/(0„). In the 
same vein we form, in analogy to Fejér's integral (2), the trigono­
metric polynomial of degree n 

Mn(P) 
1 

(n+iyZo 
EM) 

sin(n + 1) 
6,-0 ] 

ev-e 
sin-

2-KV 

fl+1 

characterized this time by the conditions Mn(0v)
z=f(0v)1 Mû (0„)=O. 

(Observe that the symbol dv has a different meaning in these two 
cases.) If /(0) is continuous and periodic with period 27r, the sequence 
{Sn(0); w = 0, 1, 2, • • • } might oscillate between — 00 and + 00. On 
the other hand, the quantities Mn(9) always remain between the 
bounds of/(0) and tend, as n—> 00, to/(0), uniformly for all 0. Thus we 
have a complete repetition of the findings of [ l ] . 

We know that Dunham Jackson formally anticipated Fejér in 
forming the expression Mn(6) (cf. the paper [8], submitted on August 
24, 1913). But there can be no doubt that they came independently 
to these important ideas: in October 1913 Fejér's results were pre­
sented by G. Pólya to the Mathematische Gesellschaft in Göttingen. 
Moreover in Fejér's work on interpolation this was only the first 
step. In a sequence of beautiful papers [2; 3; 4] he systematically 
investigated the kind of interpolation usually attributed to Hermite 
in which a rational polynomial y of degree 2^ — 1 is sought for which 
y and y' have preassigned values at n given nodal points. The step 
parabolas are distinguished by the condition that yf = 0 (or more gen-
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erally that the data for yf are uniformly bounded). Choosing for the 
nodal points, as in Gauss interpolation, the zeros of Legendre's poly­
nomial, and assuming y' = 0, the resulting polynomials have all the 
essential properties of Mn(0) pointed out above; in this case the 
natural range is the interval [ — 1 , + l ] . From this point of view, 
Fejér investigated not only the polynomials associated with the zeros 
of ultraspherical and Jacobi polynomials, but he also discussed the 
general question of finding all sequences of nodal points for which the 
associated step parabolas display the same simple behavior as for the 
Gaussian abscissas. It turns out that all the fundamental polynomials 
must keep a constant sign in the range of interpolation, a condition 
which amounts again to the positivity of a certain "kernel." Fejer's 
work on interpolation in the real domain found a strong response in 
the recent work of Hungarian analysts (Erdös, Turân, Egervâry, 
Balâzs, etc.). 

In [4] (dated 1930) Fejér presented a very elegant proof for the fol­
lowing important theorem of Faber: In whatever way we prescribe 
a sequence of nodal points in [ — 1 , + l ] , there exists a continuous 
function such that the associated Lagrange polynomials (not the 
stair parabolas) are unbounded in the range [—1, + 1 ] . 1 

(b) Fejér's work in the direction of complex interpolation is less 
voluminous than in the real domain but equally original and elegant 
(cf. [5]). Let C be a rectifiable Jordan curve in the complex z-plane. 
We seek a sequence of nodal points (z^\ 4W\ • • • 1 ^n); w = 1, 2, • • • ) 
situated on C such that f(z) being any analytic function regular in 
the closed interior of C, the sequence of the associated Lagrange 
polynomials converges uniformly to f(z) provided z is restricted to 
a closed domain entirely in the interior of C. Inspired by the concept 
of logarithmic potential, Fejér chose the nodal points in the following 
way. Let x = <fi(z) be the function mapping the exterior of C onto 
\x\ > 1 conformally and in a schlicht manner, moreover such that 
z = 00 is transformed in x = 00 and dx/dz is real and positive as z = 00. 
Then for each n the points z^ are chosen as the images of n points 
x^ regularly distributed on the unit circle \x\ = 1. This condition 
can be generalized by replacing x^ by n points which are "regularly 
distributed" in the asymptotic sense of H. Weyl. Later Kalmâr 
showed that this condition is not only sufficient but also necessary. 

Two other remarkable results of Fejér should be mentioned. 

3. Asymptotic behavior of Laguerre polynomials. No explicit 
reference is made in the pertinent publications of Fejér (cf. [ô]) to 

1 [10] refers in this respect to a construction of Marcinkiewicz, published in 1937, 
which is indeed quite similar to that of Fejér (as Marcinkiewicz himself says). 
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Laguerre polynomials; yet they deal with the asymptotic behavior 
(as n—> oc ) of the coefficients of the power series 

/A N— «— 1 — xz/(l— z) ^ - > . , ( < * ) , v n 

«I —a) e = 2-f Ln \%)z 
-a—l —xz/(l—z) <^~> T ( a ) / 

which are indeed the Laguerre polynomials [9, (5.1.9)]. Fejér proves, 
at least in the special case x = l, the following important formula: 

(«) - 1 / 2 * /2 - a / 2 - 1 / 4 a / 2 - 1 / 4 / 1/2 «7T 7 r \ 

Ln (x) = 7T e x n cos I 2(wx) J + Rn, 
\ 2 4 / 

a; > 0, J Rn\ < An«^~w. 

He considers this problem in the general frame of ideas of Darboux, 
seeking information on the asymptotic behavior of the coefficients 
of a power series from knowledge of the nature of the singularities on 
the circle of convergence. However, in the present case the method of 
Darboux fails and a direct attack is necessary. The method of Fejér 
is very similar to that termed by Watson and others as the method of 
stationary phase which goes back to certain ideas of Riemann. This 
result of Fejér initiated a long sequence of investigations on the 
asymptotic behavior of Laguerre polynomials for large values of the 
degree (see [9, 8.22]). 

4. Power series which map the unit circle onto a schlicht domain. 
Finally we point out a result of Fejér on conformai mapping [7]. Let 
w ~f(z) = X^T-o cn%n define a conformai and schlicht mapping of the 
unit circle \z\ < 1 onto the interior of a Jordan curve C in the w-
plane. According to a fundamental result of C. Carathéodory and 
others the function f(z) will be continuous in the closed unit circle 
I z\ ^ 1 and will map this closed domain onto the closed interior of C 
in a one-to-one manner. Fejér proves that the power series of ƒ(z) 
converges uniformly over the closed unit circle \z\ ^ 1 . 

This theorem is by no means trivial. It arises by combining two 
facts: (a) the convergence of ]CH C « | 2 which is equivalent to the 
finiteness of the inner area measure of C; (b) the summability of 
the power series ^cnz

n on \z\ = 1 in the sense of Abel (or Cesàro) 
which is a consequence of the continuity of ƒ(z) on the boundary. 

Many other interesting and important contributions of Fejér to 
various problems in Analysis, Algebra, Mechanics, and Elementary 
Geometry could be quoted and discussed. We trust that the brief 
selection given above will convey to the reader the style and direction 
of ideas of this eminent mathematician and confirm the impression 
that he was one of the great figures in the mathematics of the first 
half of the twentieth century. 
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