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I. Introduction. About thirty years ago it was considered that 
Topology had two aspects, according to which its practitioners could 
be roughly divided into two schools. These aspects would today be 
termed global and local, and those whose interests lay mainly in global 
properties of a space or configuration formed one school, while those 
whose chief interest lay in local properties formed the other. The 
causes for this division of interests were methodological: The com­
binatorial method, stemming chiefly from the work of Poincaré and 
Veblen, yielded only global invariants such as the classical Betti 
numbers and duality theorems; while the set-theoretic method, start­
ing from the strictly local notion of limit point, was particularly 
suited for the study of local properties. Thus a more accurate differ­
entiation between the schools could be made according to method; 
for while the set-theoretic method allowed of the study of such con­
cepts as local connectedness, the concepts of connectedness and uni-
coherence, for example, were global; and soon the combinatorial 
method became adapted to the study of local properties.3 

While this division into schools has essentially disappeared (al­
though it is still convenient to distinguish the set-theoretic and alge­
braic methods), the distinction between global and local aspects of 
topological spaces furnishes a useful theoretical perspective. I t is 
the purpose of the present discussion to focus attention on properties 
which in general lie between the global and local, and which might 
therefore be termed medial.41 For example, the property of every open 
subset of a space being a Gs is medial, in that it holds for all open sets, 
large and small. 

As in the case of such local properties as that of local connected­
ness, however, we find it more fruitful, in defining medial properties, 
to use pairs of open sets rather than single open sets. The original 
definition of local connectedness at a point x stipulated that for arbi­
trary open set U containing x there exists an open set V such that 

1 Presidential Address delivered before the Annual Meeting of the Society in Cin­
cinnati on January 29, 1958; received by the editors September 4, 1959. 

2 Aid in the preparation of this address was received from National Science 
Foundation Grants G-2783 and G-5612. 

3 For a more extended discussion of the situation thirty years ago, see my sym­
posium lecture [9], 

4 We resist the temptation to introduce the barbarism "glocal," on grounds of its 
ease of confusion with "global." 
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xÇzVCU and V lies in one component of U. And although in the 
case where a space is locally connected at every point the above 
definition is equivalent to requiring merely that every point have 
arbitrarily small connected neighborhoods, it turns out that for the 
so-called r-dimensional local connectedness, r > 0 , it is necessary to 
go back to the double neighborhood type of definition in order to 
obtain a topologically fruitful notion. Moreover, it would, for in­
stance, yield only triviality to turn connectedness into a medial 
property of a space X by stipulating that all open subsets of the 
space shall be connected; X would immediately be seen to be of 
necessity a degenerate space ! (We assume Hausdorff spaces through­
out.) Or, if we stipulated that each open set have only a finite num­
ber of components, then the space would of necessity be finite. On 
the other hand, if we require for every pair of open sets P and Q, 
P D Q and Q compact, that Q lie in a finite number of components of 
P , we get a significant property; if X is locally compact, it will then 
be locally connected at every point. 

There is a type of medial property which I have found very fruit­
ful, but whose significance I did not realize even though I had used 
it in a number of different situations. Let us call a pair of open sets 
P and Q a canonical pair if P D Q and Q is compacts Let G(U) be a 
group which is a function of the open sets U of a given space X, 
such that for every canonical pair P , Ç, there exists a homomorphism 

(0) H:G(Q)-*G(P) 

induced by the inclusion mapping i: Q—>P. For example, G(U) might 
be the homology group generated by compact cycles and homologies 
in U. In particular, if G{U) is the 0-dimensional homology group 
over a field, and i*G(Q) is required always to be finite dimensional in 
every homomorphism of type (0), then, again assuming X to be 
locally compact Hausdorff, we get a property which is equivalent 
to that of the local connectedness of X. If G(U) is the r-dimensional 
homology group, r > 0 , then a more significant property is obtained, 
much stronger than the local r-connectedness of the space, by re­
quiring that i*G(Q) always be finitely generated. To summarize: 
The type of medial property we have in mind is based upon the fixing 
of a particular kind of group G(U), together with the stipulation that 
for every canonical pair P , Q, the image i*G(Q) in (0) is finitely gen­
erated. 

I t will be found that a number of theorems which were originally 
stated in terms of local properties find significant generalizations in 
terms of medial properties. 
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Throughout, X will denote a locally compact Hausdorff space, 
unless otherwise specified. Open subsets of X will be denoted by 
U, V, Wj P , Q, R with appropriate indices as required. Cech hom­
ology and cohomology with a field as coefficient domain are used 
throughout. For M a compact set, Hr(M) and Hr(M) denote the 
homology and cohomology groups of dimension r, respectively. And 
if M is not compact, then H may be replaced either by h to denote 
compact supports in both homology and cohomology, or by p̂ to 
denote corresponding groups "mod infinity"; for instance, &r(M) 
denotes the homology group Hr(M, p), where M denotes M com-
pactified by addition of the ideal point p. Finally, whatever the group 
G(U), the image of i* in (0) may be denoted by G[Q\P). 

The principal medial properties with which we shall be concerned 
are the following: 

DEFINITION 1.1. Property (P, Q)r. A subset M of X has property 
(P, Q)r if for every canonical pair P , Q of open subsets of X, the 
group hr{MC\Q\ MC\P) is finitely generated. 

REMARK. While in case M — X, property (P, Q)r is a topological 
property of X, for a subset M<ZX, it is a positional property. More 
precisely, so long as only canonical pairs P , Q of the space M are 
employed, the property remains invariant; but if M is imbedded in 
a larger space X, then possession of the property by M depends upon 
its position in X. The following example will make this clearer: 

EXAMPLE 1.1. In the cartesian plane £ 2 , let A = {(x, ;y) |0<x 
^1 /TT , y = s i n ( l / * ) } and B={(x, y)\x=>09 - l ^ y ^ l } ; let C be 
an arc joining (1/V, 0) and (0, —1) in the fourth quadrant of E2 but 
not meeting A\JB otherwise. If M is the bounded domain whose 
boundary is A\JB\JC, then M does not have property (P, Q)o. 
This is evident if P and Q are circles with centers at (0, 0) and radii 
1/2 and 1/4 respectively. However, M is homeomorphic with the 
open circular disk bounded by x2+y2 = l which does have property 

(P, Ö)o. 
By way of contrast, the set X — A\JB does not have property 

(P> (?)o, and this will be a topological invariant of X (because of 
the compactness of X and the consequent equivalence of its open 
subsets with the intersections by open subsets of any space in which 
it may be imbedded). 

REMARK. In 1920, when topological characterizations of those 
spaces that are continuous images of the real number interval ("con­
tinuous curves") were being sought, Sierpinski [ó] showed that a 
necessary and sufficient condition that a metric continuum C be such 
an image is that for arbitrary positive number e, C be the union of a 
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finite number of continua Ci of diameter <e ; thus showing that the 
global property so defined is equivalent, for compacta, to the local 
connectedness previously shown (by Hahn and Mazurkiewicz) to 
characterize continuous curves. I t is easy to show that Sierpinski's 
global property is equivalent, for compacta, to property (P, Q)Q. 
R. L. Moore later [5] named the Sierpinski property, with the re­
striction that the Ci be compact deleted, "Property S," and exploited 
it in investigations of positional properties of locally connected sets 
in the plane, etc. 

In [ l l ] , I studied a property which I called "Property Sn," a 
generalization of the notion of "Property S" to higher dimensions. 
In [l3] this notion was generalized to one called "Property Sr rel Gr," 
where Gr was a special group of r-cycles, and in [13, p. 236, Theorem 
7.9] equivalence with the corresponding "P , Q" property shown; im­
mediately after which a definition [13, p. 237, 7.12] of "Property 
(P, QY rel Gr" was given. Previous to the latter, and independently 
thereof, in [13, p. 193] I defined "Property (P, Q)r" for cohomology 
(the "(P, QY" defined below) and used it in the study of generalized 
manifolds. Association of the two properties was finally made in 
Chapter XI of [13], where in particular the "First fundamental 
duality theorem" (Theorem II . l below) of the present paper was 
established for the compact case. 

DEFINITION 1.2. Property (P, QY- A subset M of X has property 
(P, QY if for every canonical pair P , Q of open subsets of X, the 
group hr{MC\Q\ MC\P) is finitely generated. Thus this property 
differs from (P, Q)r only in that (compact) cohomology replaces 
(compact) homology. 

DEFINITION 1.3. Property (P, Ç, ~ ) r . This differs from (P, Q)r 

only in that the group of bounding compact r-cycles of M is involved. 
More precisely, a subset M of X has property (P, Q)r if for every 
canonical pair P , Q of open subsets of X, the image of id in the se­
quence of homomorphisms 

d i 
(1) hr+1(M, AT H (?) -> hr(M C\ Q) -> hr(M H P) 

where i is induced by inclusion, is finitely generated. 
An equivalent definition which we shall find useful is the following: 

In the sequence of homomorphisms 

(2) hr+xiM, Mr\Q)-+ hr(M C\Q)^X hr(M C\ P) ^ hr(M) 

where i\ and H are induced by inclusion, let L denote the kernel of 
i2ii; then i\L is finitely generated. 
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REMARK. Since we assume X to be locally compact throughout, 
the set P in any canonical pair may always be assumed to have a 
compact closure. Hence for X to have property (P, <2, ^ ) r it is 
necessary and sufficient that in the sequence of homomorphisms 

(3) kr+1(X, Q) ^ Hr(Q) ^ Hr(P) 

where i is induced by inclusion, the group idhr+i(X, Q) be finitely 
generated. Similarly, for X to have property (P, Q)r it is necessary 
and sufficient that Hr(Q\ P) be finitely generated for every canonical 
pair in which P is compact. 

Referring to Example 1.1, neither A\JB nor the domain M has 
property (P, Ç, ~ )o . 

DEFINITION 1.4. Property (P, Qy ~)\ This differs from (P, Q, ^ ) r 

only in that cohomology is involved instead of homology. For exam­
ple, for a locally compact space X to have (P, Q> ^ ) r , it is required 
that for every canonical pair P , Q, the image of id obtained from the 
cohomology sequence 

(4) Jf~i(X, Q) A hr(Q) A A'(P) 

be finitely generated. 
REMARK. Clearly if a set M has property (P, Q)r, then M has 

(P, Q> ^ ) r . However, the reverse does not necessarily hold. This is 
shown by the following example. 

EXAMPLE I. 2. With X = E3, let M consist of a denumerable set of 
circles Cn, disjoint except that Cn is tangent to C„+i, w = 1, 2, 3, • • • , 
and converging to a point p (a picture may be found in [13, p. 341]). 
Then both M and X — M have property (P, Q, ^ ) i , but neither has 
(P,Qh. 

ABBREVIATIONS. Whenever we are dealing with a homomorphism 
<p: G—^Hy we may designate the image of G in H by Im <fi. And we 
may designate the kernel of 4> by Kern <j>. 

That a group G is finitely generated may be expressed by writing 
((G is f.g." 

Tha t a set A contains the closure of a set B may be denoted by 
the expression UA "DB." 

That a proof has been completed may be indicated by the sign | 
at the end of the proof. 

II. Duality theorems. We first prove certain relations between the 
various properties defined above, which we call "Fundamental Dual­
ity Theorems." 
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THEOREM I I . l (F IRST FUNDAMENTAL DUALITY THEOREM). In order 
that a locally compact space X should have property (P, Q, ~ ) r - i , r è 1, 
it is necessary and sufficient that X have property (P, Q, ^ ) r . 

(In [13], this theorem was given only for the case where X is com­
pact; see [13, p. 327, Theorem 3.3]. A simpler proof than that given 
below can be given for the compact case.) 

PROOF OF NECESSITY. AS remarked above, we may assume, since 
X is locally compact, that P is also compact. And we need only show 
that in the cohomology sequence (4), Im ib is f.g. Now the dual of 
(4) is 

(40 Q^X -Q)<- Hr(X, X-Q)£ Hr(X, X - P ) . 

Consider the diagram 

&-!(*• ~ G) *- Hr(P, ? - 0 £ Hr(F, P~P) 

# r_x(P - P) 

in which the Hr(X, X-Q) andJT^X, X-P) of (4') have been re­
placed by Hr(P, P-~Q) and Hr(P, P~P) respectively. This diagram 
is commutative and Im i2d is f.g. since X has property (P, Q, ~)r-i. 
I t follows tha t Im dii is f.g. and hence also that Im id in (4) is f.g. 

PROOF OF SUFFICIENCY. With a canonical pair P , Q as in the proof 
above, let Pi , Q% be open sets such that POPIDQXDQ. I t will be 
sufficient to show in the sequence of homomorphisms 

(30 hr(X, Q) ~> Hr-i@) ^ Fr-lCft), 

obtained from (3) by replacing r + 1 by r and PIr(P) by Hr(Qi), tha t 
Im id is f.g. The dual of (3;) is 

&(X - ( ? ) < - H*~KX> X-Q) I- H*-HXa X-Qi). 

Consider the diagram 

&(X -~Q)t W~\Q) i~ H-KQi) 
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This is commutative, and Im iid is f.g. since X has property 
(P, Q, ~)r. Consequently Im Si* is f.g., and this implies that in (3'), 
Im id is f.g. I 

REMARK. While Theorem II. 1 continues to be valid for closed 
subsets of a locally compact space (as a positional property), it does 
not generally hold for nonclosed subsets (not even for open subsets). 
For example, the set M of Example 1.1, as a subset of E2, has prop­
erty (P, Q, ~ ) i , but not property (P, Q, ~)2. 

We recall that if X is compact and M a. closed subset of X, and 
if X is acyclic in dimensions r and r + 1, then the groups Hr(M) and 
i î r + i (X, M) are isomorphic (a direct consequence of the exactness 
of the homology sequence of the compact pair X, M\ cf. [3, p. 11]). 
The second fundamental duality theorem will be an analogue of this. 
First, however, we need another definition and two preliminary theo­
rems. 

DEFINITION II . 1. If for every canonical pair of typeX, Q dim hr(Q\ X) 
is finite, then we say X has property (X, Q)r. The corresponding 
homology property (X, Q)r is defined similarly. 

REMARK. If we denote dim hr{X) by pr(X), then we distinguish 
three cases: (1) pr(X) may be finite; (2) pr(X) may be infinite, yet X 
have property (X, Q)r, in which case we write pr(X)*=o)\ (3) pr(X) 
may be infinite and X fail to have (X, Q)r, in which case we write 
pr(X) = 00. The expression pr(X) ^co denotes that case (3) is excluded, 
and evidently this is equivalent to X having property (X, Q)r. 

Similar comments may be made for pr(X) =dim hr(X). 

THEOREM II.2a. Let X have properties (P, Ç, ~ ) r +i and (X, Q)r. 
If M is a closed subset of X having property (P, Q, ~)r, then X — M 
has property (P, Q, ~ ) r + 1 . 

PROOF. Let P , Q be a canonical pair and select an open set P hav­
ing compact closure such that RD P DQ. Consider the following dia­
gram : 

j ô 

hr(X) -> hr(M) > hr+1(X - M) 

î <Ê3 Î gs 

hr{R C\M)-X hr+l(R - M) 

Î4>2 Îg2 

hr(P r\M)-i hr+1(P - M) % hr+1(P) 

Ui . Î *i 
hr+1(Q - M) ?X hr+1(Q) 
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where the horizontal sequences are portions of cohomology sequences, 
and the vertical mappings are induced by inclusion. 

Let L = Kern gzg2gi- We must show that g2g\L is f .g. 
The group hiisL is f.g., since X has (P, Q, ^ ) r + 1 , and consequently 

iig\L is f.g. Denote the kernel of the mapping i2 of g\L by K. We can 
represent g\L as a direct sum K+H, where H^i^giL and is f.g. Also, 
K has antecedent K' in hr(PC\M). 

Now 8(</)3<j)2K')=gzg2Ô2K' = gzg2KCg3g2giL = 0. Hence the group 
0302-K' has antecedent K2 in hr(X), and K2 is f.g., since X has (X, Q)r. 
Hence jK2 = <l>z4>2K' is f.g., and Kf may be represented as a direct sum 
Ko+Ho, where Ko = Kern 03^2 and iJo is f.g. Evidently i£o is based 
on cobounding cocycles of M and since M has property (P, Ç, ^ ) r , 
02i£o must be f.g. I t follows that Si02^ = ôi</>2̂ o + ôi02-i7o is f.g., and 
therefore that g2Ö2K' = g2K is f.g. Finally, then, g2giL = g2K+g2H is 
f.g. 

THEOREM II.2b. If X has property (P, Q)r and M is a closed subset 
of X such that X — M has property (P, Q, r^,)r+1, then M has property 

(p, Q, ~y. 
PROOF. Again let R, Q be a canonical pair of open subsets of X, 

and let P be an open set with compact closure such that RoP z>Q. 
Consider the following diagram : 

hr(M) > hr+l(X - M) 

Î4>3 Î 

hr(R) J-X hr(R H M) f2 

U . Hz d I 
hr{P) J-X hr(P Pi M) 4 h'+l(P - ikf) 

î *i Î *i 

Let L = Kern <£3</>2<£i. We must show that </>2<£i£ is f.g. 
Since i2ii(dzL) = oi<£3</>20iL = 0, ô3L must be based on cobounding co-

cycles of X — M; and since X — M has (P, Ç, ~ ) r + 1 , ii(dzL) must be 
f.g. I t follows, by commutativity, that S2<£iL is f.g. Denote the kernel 
of the mapping d2 of 0iL by K; K is a subgroup of hr{Pr\M) and has 
an antecedent X ' in hr(P). 

The group ii£' is f.g., since X has (P, Ç)7", and therefore i i iK' 
=(f>2J2K/ =<p2K is f.g. Now 0iL is representable as a direct sum 
K+H, where iJ«52(<£iL), and fafaL—faK+fall. I t follows that 
<£20i£ is f.g., since both faK and H are. [ 
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It is to be expected that the "(P, QY and "(P, Q, ~ ) " properties 
are related. These relations are exhibited in the following two lemmas: 

LEMMA ILL In order that a subset M of X have property (P, Q)r, it 
is necessary and sufficient that pr(M) ^co and that M have property 
(P, Q, ~)r. In particular, if M is compact, then "pr(M) =co" may be 
replaced by "pr(M) be finite." 

PROOF OF NECESSITY. In the sequence of homomorphisms 

hr{M C\ Q) -^ hr(M r\ P)^X hr{M) 

induced by inclusion (P, Q being any canonical pair), Im i\ is f.g., so 
that a fortiori Im i2i\ is f.g., implying that pr(M)Sco. That (P, Q)r 

implies (P, Q, ~ ) r is trivial. 
PROOF OF SUFFICIENCY. Referring again to the sequence of the 

preceding paragraph, we are given that Im i2i\ is f.g. since pr(M) ^co. 
Let Kern i2ii = K; then hr(Mr\Q) may be represented as a direct sum 
K+G where G « I m i2i\. Evidently K is generated by bounding 
cycles of M, so that i\K is f.g. since M has property (P, Q, ^ ) r . Con­
sequently Im ii is f.g. 

LEMMA 11.2. If M is a closed or open subset of a locally compact 
space X, then in order that M have property (P, Q)r it is necessary and 
sufficient that pr(M) = co and M have property (P, Q, ~)r. In particular, 
if M is compact, then "pr(M)^œ" may be replaced by "pr(M) be 
Unite. " 

By virtue of Lemma 11.2, we may combine Theorems 11.2a and 
II.2b to give: 

THEOREM 11.2 (SECOND FUNDAMENTAL DUALITY THEOREM). Let X 

be a locally compact space having properties (P, Q)r and (P, Q, ~)r+l, 
and let M be a closed subset of X. Then a necessary and sufficient condi­
tion that M have property (P, Q, ~y is that X — M have property 
(P, Q, ~)"+i. 

REMARK. Theorem II.2 replaces Theorem XI.3.4 of [13, p. 328], 
which assumed not only that X is compact, but that X had only the 
property (P, Q, ^^) r instead of (P, Q)r. That the latter requirement was 
insufficient is shown by the conversion of the set A VJB of Example 
1.1 into a locally connected space X by the addition of intervals 
from lines parallel to the x-axis as follows: L\— {(x, 0) | O ^ x ^ l / x} ; 
L2 is a segment from the line y = 1/2 and L3 a segment from the line 
y= —1/2; and so on (see figure). The resulting space X has property 
(P, Q, ^ ) o since X is locally connected, and property (P, Q, ^ ) i 
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trivially. Hence by Theorem I I . l , X has properties (P, Q> ~)x and 

(P, Q, ~ ) 2 -
Now let M be a closed subset of the space X (of the preceding para­

graph) forming a configuration homeomorphic to the set A\JB of 
Example I I . l but consisting only of the points of Example I I . l hav­
ing non-negative coordinates and of alternating segments d\a^ 
#304, • • • , of Li. Then M does not have property (P, Q> ~)o since 
it is not locally connected; and hence M does not have property 
(P, Q, ~)1 by Theorem ILL But X - M d o e s have property (P, <2, ~ ) 2 

trivially. Note, incidentally, that pl{X) — <x>, so that X cannot have 
property (P, Q)1 and the hypothesis of Theorem 11.2b is not satisfied 
for r = 1. Incidentally, it will be noted that the proof of the sufficiency 
of Theorem XI.3.4 of [13, p. 328] actually assumed property (P, Q)r, 
and the proof of the necessity thereof assumed that pr(S) was finite. 

For our purposes below, we recall the following relations (proved 
in [17] by methods extendible immediately to the case of the compact 
cohomology groups): With M(ZX, 

(i) pr(M)^pr(X)+p^1(X-M)1 

(ii) P'(X)£P'(M)+P'(X-M), 
(iii) pr+l{X-M)Spr(M)+pr+1{X). 
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THEOREM II.3a. Let M be a closed subset of X, and suppose that 
Pr{X) ^o) and X has property (P, <2)r+1. If M has property (P, Q)r, 
then X — M has property (P, Q) r+1. 

PROOF. By Lemma II.2, pr(M)^a), and pr+l(X)^œ. Hence by 
relation (iii) above, pr+1(X-M) ^œ. By Theorem 11.2a, X — M has 
property (P, Ç, ^ ) r + 1 . I t now follows from Lemma II.2 that X — M 
has property (P, Ç) r + 1 . 

THEOREM II.3b. Let M be a closed subset of X and suppose that X 
has property (P, Ç)r. If X — M has property (P, QY+\ then M has 
property (P, Q)\ 

PROOF. By Lemma II.2, pr+l(X-M) ^co, and pr(X) gco. I t follows 
from relation (i) that pr(M) gco. By Theorem 11.2b, M has property 
(P, Ç, ^ ) r . I t now follows from Lemma II.2 that M has property 
(P, QY-

From the last two theorems we have: 

THEOREM 11.3 (ALTERNATIVE FORM OF SECOND FUNDAMENTAL 

DUALITY THEOREM). Let M be a closed subset of X and suppose that 
X has properties (P, QY eind (P, QY+l> Then a necessary and sufficient 
condition that M have property (P, QY is that X — M have property 
(P, QY+K 

REMARK. Theorem II.3 may, of course, be proved directly and 
independently of Theorems 11.2a and 11.2b. 

We next prove a Poincaré-like type of duality for the "P , Q" prop­
erties. For the definition of an orientable ^-dimensional generalized 
manifold (abbreviated, orientable n-gm; compact n-gm is denoted 
by n-gcm), we refer to [13, VI I I ; 16]. 

THEOREM 11.4 (THIRD FUNDAMENTAL DUALITY THEOREM). Let U be 

an open subset of an orientable n-gm M. Then for U to have property 
(P, Q, ^ ) r , Kr^n, it is necessary and sufficient that U have property 
(P, <2, ~ ) n _ . 

PROOF. Consider the following diagram: 

Î 4>2 Î ^2 

hr(pr\u)^lhn-.r(pr\ u) 
Hi Hi 

hr(Qr\u)^hn-.r(Qr\ u). 
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The sets P , Q form a canonical pair, and the </>'s and \p's are homo-
morphisms induced by inclusions; while the a's are isomorphisms 
onto by virtue of the Poincaré type of duality between the compact 
homology and compact cohomology groups of open subsets of an 
orientable n-gm (see [13, p. 260, 5.16]). 

Let L = Kern 020i and K = Kern ^2^1. Since ai<f)2<l>iL=\l/2'fti(XzL = 01 

it is clear that a%L(ZK] and by symmetry, a^KCL, so that CLZL — K. 

To show that <fiiL is f.g. in case U has property (P, Q, ~)n-r> note 
that <j)iL=aïl\l/ia%L = aï~lypiKy and that \p\K is f.g. since U has prop­
erty (P, <2, ~ ) n - r . 

Similarly, if £7 has property (P, Q, ~ ) r , 0iL is f.g. and consequently 
\l/iK = a2(l)iarlK = a2<l)iL is f.g. | 

REMARK. Theorem II.4 is a strengthening of Theorem XI.3.5 of 
[13, p. 329], inasmuch as in the latter theorem it was assumed that 
M was compact as well as acyclic in dimensions r — 1 and r — 2. 

We leave to the reader the proof of the corresponding form of dual­
ity for the general "P , Q" properties: 

THEOREM 11.4a (ALTERNATIVE FORM OF THIRD FUNDAMENTAL 

DUALITY THEOREM). Let U be an open subset of an orientable n-gm M. 
Then for U to have property (P, Q)r it is necessary and sufficient that U 
have property (P, Q)n-r. 

From the above duality theorems, one easily derives the following 
theorem : 

THEOREM ILS (FOURTH FUNDAMENTAL DUALITY THEOREM). If F 

is a closed subset of an orientable n-gm M, then a necessary and suffi­
cient condition that F have property (P, Q, ^ ) r for an r such that 
0^r<n — l, is that M—F have property (P, Ç, ^ ) w _ r _ 2 . 

For the proof, we recall that every generalized manifold has the 
"P> 0 " properties in all dimensions, both in homology and cohomol­
ogy (see [13, p. 244, 1.1 ]), so that Theorem II.2 applies; the proof 
is then obtained from the succession of equivalences of Theorems 
I I . l , II.2 and II.4. 

REMARK. Theorem 11.5 is a strengthening of Theorem XL 1.1 of 
[13, 316], in which it was assumed that M was compact as well as 
acyclic in dimensions r, r + 1 and r + 2. 

The set M of Example 1.2, which we noted has property (P, Q, ~ ) i , 
has a complement Ez — M having property (P, Q, ^)o—an instance 
of the above duality. However, M does not have property (P, Q)i. 

I t is also interesting to note the application of Theorem 11.5 to 
the positional properties of Peano continua in euclidean spaces. This 
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is the case r = 0, where the local connectedness of a continuum be­
comes equivalent to the property (P, Q, ^ )o- Thus Theorem 11.5 
shows that in any euclidean w-space (or orientable w-manifold), the 
Peano continua are positionally characterized by their complements 
having property (P, Q, ~ ) n _ 2 . 

I t is instructive to observe why the complement of the configura­
tion AVJB of Example 1.1, imbedded in E2 or E3, fails to have prop­
erty (P, Q, ~ )n_2. 

For the general "P , Q" properties, the following duality holds: 

THEOREM 11.6. If F is a closed subset of an orientable n-gm M, then 
a necessary and sufficient condition that F have property (P, Q)r,for an 
r such that l^r^n— 1, is that M—F have property (P, Q)n-r-i. 

PROOF. By Theorem 11.3, for F to have property (P, Q)r is equiva­
lent to M—F having property (P, Q)r+1, and the latter, by Theorem 
II.4a, is equivalent to M—F having property (P, Q)n_r_i. 

REMARK. Theorem 11.6 is analogous to the well-known Alexander 
Duality Theorem; note, however, that it is not necessary to impose 
any acyclicity conditions on the manifold as in the case of the Alex­
ander theorem. Incidentally, as originally proved in [13, p. 330, 
Theorem 3.12], acyclicity in dimensions r — 1, r and r + 1 was re­
quired, as was also compactness of the manifold. 

LEMMA II .3. If F is a closed subset of an n-gm M, then pr(F)^co 
if and only if pr+1(M—F) ^co. In particular, pr(F) is finite if and only 
if pr+1 (M-F) is finite. 

Lemma 11.3 follows from the relations (i) and (iii) preceding Theo­
rem 11.3a (with My F replacing X, M respectively), and the fact 
that pr(M) ^co for all r. 

LEMMA II.4. If F is a closed subset of an n-gni M, then pr(F) ^co 
if and only if pr+i(M, F) gco. In particular, pr(F) is finite if and only 
if pr+i(M, F) is finite. 

PROOF. Relations (i)-(iii) may be duplicated for compact homol­
ogy, with hr(X, M) replacing hr{X — M). The relations analogous to 
(i) and (iii), with M, F replacing X, M respectively, are 

(i') Pr(F)Spr(M)+Pr+l(M,F), 
(iii') Pr+l(M,F)Spr(F)+Pr+1(M). 

THEOREM 11.7. If F is a closed subset of an orientable n-gm M, then 
a necessary and sufficient condition that F have property (P, Q)r> for 
an r such that 0^r<n — l,is that M—F have property (P, Q, ~)n_r_2 

and that pr+i(M, F) ^co. 
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PROOF. By Lemma II . 1, for F to have property (P, Q)r is equiva­
lent to pr(F) So) and F having property (P, Ç, ~ ) r . By Theorem 
II.5, for F to have property (P, Q, ~ ) r is equivalent to M —F having 
property (P, Q, ~ ) n _ r _ 2 . And by Lemma II.4, pr(F) ^co is equivalent 
to pr+i(M, F) ̂ co. 

REMARK. Theorem II.7 generalizes Theorem XI.1.4 of [13, p. 319]; 
in the latter theorem, compactness of M as well as acyclicity in 
dimensions r, r + 1 and r + 2 were assumed. When M is compact, the 
condition pr+i(M, F) ̂ o) may be replaced by pn-r-\{M—F) finite. 

EXAMPLE I I . l . In cartesian 3-space, E3, let X denote the subspace 
obtained by combining the set B of Example 1.1 in the (x, y) -plane 
with a hollow tube T replacing A and converging to B in the same 
manner as A (a picture of this configuration may be found in [13, 
p. 337]). Although p2(E\ X)=0, Ez-X fails to have property 
(P, Q, ~)o and hence X fails to have property (P, <2)i. 

In Example 1.2, M has property (P, Q, ~ ) i , but not (P, Q)i; 
X-Mhas property (P, Q, ~ )o , but p2(X-M)= <*>. 

THEOREM 11.8. If F is a closed subset of an orientable n-gm M, and 
both pr(F) and pr+1(F) are ^co, then for F to have property (P, Q)r, 
where 0^r<n--l, it is necessary and sufficient that M—F have prop­
erty (P, <2)n-r-2. 

PROOF OF NECESSITY. By Theorem II.7, M—F has property 
(P, Ç, ~ ) n - r -2 . By Lemma II.3, pr+2(M-F) go?, implying (by dual­
ity) pn-r^M—F^ûœ. That M-F has property (P, Q)n-r-2 now 
follows from Lemma I I . l . 

PROOF OF SUFFICIENCY. By Lemma II.4, pr+i(M, F)^oo. That F 
has property (P, Q)r now follows from Theorem II.7. 

REMARK. Compare Theorem XI.1.6 of [13, p. 320]. 

I I I . Relations with local connectedness. I t is well known that if 
a compact space is lcn at every point, then the lcn property of the 
space is expressible globally as in the chain-realization lemma of 
Lefschetz [4]. The principal motive for the Lefschetz lemma was to 
establish the complex-like character of the compact lcw spaces, so 
far as their homology groups of dimensions up to and including n are 
concerned; more precisely, to prove the existence of a certain com­
plex K such that the homology groups £Tr(X), for all r^n, of the 
compact lcn space X, are isomorphic with subgroups of the groups 
Hr(K) of corresponding dimensions. When the coefficient group is a 
field, so that the homology groups become vector spaces over the 
field, then the dimensions themselves—the Betti numbers—are finite 
and suffice to characterize the groups; and in this case K can be so 
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selected that the isomorphisms are onto. 
The medial properties that we have defined enable us to throw 

new light on and to generalize these results. That there exists a rela­
tionship between "P , Q" properties and "lc" properties is evident 
from the easily proved fact that for any r, if X has property (P, Q)r, 
then it is r-lc. Tha t the converse fails is evident from the following 
example : 

EXAMPLE 111.1. In the cartesian plane let 

Xi= {(*,y)\ OûxS l , y = 0}, 

X 2 = {(x,y)\x = 0,0SyS 1}, 

X 3 = {(x,y)\0£x£ l , y = l j , 

a n d L w = { ( x , y)\x = l/n,Q^y^l}, n = l,2, 3, • • • ; a n d X = U?-i X{ 

UUft
w-i Ln. Then X is 1-lc but does not have property (P, Q)\. 

However, as we have remarked above, for r = 0 the equivalence 
does hold; and, more generally, the property of X being lcw and the 
possession of (P, Q)r for r = 0, 1, • • • , n are equivalent. A much more 
revealing, as well as more general, result, is embodied in the following 
theorem : 

THEOREM I ILL If a locally compact space X has property (P, Q, ~ ) n 

and is (w + l)-lc, then X has property (P, Q)n+i. 

REMARK. In view of the comments above, this theorem could be 
stated as an equivalence: For locally compact spaces having property 
(P, Q, ~ ) » , the local property (w + l)-lc and the medial property 
(P> Q)n+i are equivalent. 

PROOF OF THEOREM 111.1. Since X is locally compact, to show that 
it has property (P, Q)r is equivalent to showing that for every 
canonical pair P , Q of open sets, Hr(Q\ P) is f.g. And if P ' , Q' form 
another canonical pair such that P D P ' D Ç O Q , then for Hr(Q'\ P') 
to be f.g. implies Hr(Q\ P) f.g., as is shown by the sequence 

Hr(Q) -> Hr{Q') -» Hr(P') -> Hr(P) 

of homomorphisms induced by inclusions. 
Now since X is (n + l)-lc, there exists for each x £ X and open set 

U containing x a canonical pair P(x), Q(x) of open sets containing 
x and contained in U such that Hn+i(Q(x)\ P (x ) )=0 . If Qf(x) is an 
open set such that xÇzQ'ix) cQ(x), then P(x), Q'(x) will be called a 
special canonical pair of neighborhoods for x. 

Suppose P , Q a given canonical pair of open subsets of X. Then 
there exists a finite set of special canonical pairs of neighborhoods 
P(xi), Q'(xi) such that if Ql =UJ.X Q'fa), P* = UJ.1P(x<), then 
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QClQi d7kC.Pt and as remarked above, we need only show that 
Hn+i{Qk | Pu) is f.g. If k = 1, this is trivial, so that we may use induc­
tion on k; precisely, by showing that if Hn+i{Qi \ Pk) is f.g. for all 
choices of P , Q, etc., and k^tn, then Hn+i(Q'm+i\ Pm+i) will be f.g. 

Consider the following diagram : 

#n+i(Pi) + Hn+1(P2)—^Hn+1(P) 

tfw+1(£i) + Hn+1(R2) —U Hn+1(R) — ^ Hn(Rx C\ R2) 

Ui Î * 

3n+i(Q) —^Hn{Qxr\Q2) 

where (1) the horizontal rows are portions of Mayer-Vietoris se­
quences [3, p. 39], (2) the vertical homomorphisms are induced by 
inclusions, and (3) Pi, P2 and P represent, respectively, unions of 
mP(xi)'s, a single P(xm+i) and P i U P 2 ; (4) the U's and Q's are ob­
tained from the corresponding special canonical pairs P(x*), Q'(xi) 
with a new R(xi) such that P(x») oQ(xi) oR(Xi) =>Q'(xt); the P(x t) , 
R(xi) are special canonical pairs, so that the induction assumption 
applies to them; and Q — Qm^Qr{xm+\) etc. 

We must show that g2giHn+i(Q) is f.g. 
Let Bo = Im <j>2. Then, since Im <f>ik2 is f.g. by the induction assump­

tion and the (w + l)-lc hypothesis, g2-Bo = Im <j>ik2 is also f.g. 
Since X has property (P, Q, ~)m h{lm A3) is f.g. I t follows that 

A2(Im gi) is f.g., and hence that Im g\ is representable as a direct sum 
B{ +N where BÓ CB0 and N is f.g. Hence g2giHn+i(Q) is f.g. | 

In considering a property that is defined relative to a special di­
mension, it is frequently useful to extend the property over a range of 
dimensions. For instance, except for the initial dimension 0, the w-lc 
property does not as a rule impose enough restriction upon a space 
to obtain fruitful results. I t is for this reason that so much attention 
has been centered on the "lcn" spaces, i.e., spaces that are r-lc for 
r = 0, 1, • • • , n. We shall find, similarly, that the "P , Q" properties 
are frequently more useful when extended to more than one dimen­
sion. In the case of local connectedness, we let the symbol lcj signify 
property r-lc for r = k, k + 1, • • • , n, although instead of "lc£" we 
continue to use the conventional "le*". For the "P , Q" properties we 
define: 

DEFINITION I I I . l . A set will be said to have property &(P, Q)n, k<n, 
if it has property (P, Q)r for r = k, k + 1, • • • , n\ although instead of 
W(P, Q)n we continue to use the symbol (P, Q)n. The symbol 

d7kC.Pt


i960] A CERTAIN CLASS OF TOPOLOGICAL PROPERTIES 221 

k(P, Q, ~)n is defined similarly; and likewise *(P, Q)n, k(P, Q, ~)n 

for cohomology. 
Since property (P, Q)r implies r-lc, one obtains from Theorem III.l 

by induction: 

THEOREM III .2. If a locally compact space X has property (P, Q, ~)k 
for some non-negative integer k and is lc£+1 for some n>k, then X has 
property *+i(P, Q)n. 

COROLLARY I I I . l . Under the same hypothesis as in Theorem 111.2, 
pr(X) ^o)for r = k + l, k + 2, - • - , n; and if X is compact, then these 
numbers are finite. 

COROLLARY 111.2. Under the same hypothesis as in Theorem 111.2, 
there exists a locally finite complex K such that pr(K) =0 for r^k and 
pr(K) —pr(X) for r = k + l, k + 2, • • - , n; if X is compact, K may be 
taken as a finite complex. 

COROLLARY 111.3. For locally compact spaces having property 
(P> Q)k, the properties lc£ and &(P, Q)n are equivalent. 

THEOREM I I I .3 . For every compact space X, the following properties 
I, II and III are equivalent: 

I. X has property (P, Q)k, is lc£+1, and pn+\{X) is finite. 
II . X has property /t(P, Q)n, and pn+1(X) is finite. 
I I I . X has property k+1(P, Q)n+l and pk(X) is finite. 

PROOF. That I implies II follows from Theorem 111.2; and that II 
implies I follows from the fact that (P, Q)r implies r-lc. That proper­
ties II and III are equivalent may be shown as follows: By Lemma 
II.1, II is equivalent to property &(P, Q, ~ ) „ and pr(X) finite for 
r = k, k + 1, • • • , n + 1. By Lemma 11.2, III is equivalent to 
*+1CP» Q, ~ ) w + 1 and pr(X) finite for r = k, k + 1, • • • , n + 1. By the 
first fundamental duality theorem, k+1(P, Q, / ^ ) w + 1 is equivalent to 
fc(P, Q, ~ )n . 

IV. Positional properties; duality with lc properties. The results 
which we have been stating in §111 all have to do with medial prop­
erties "P , Qn of the entire space. We return now to the kind of ap­
plication exemplified in §§1 and II. For instance, in Theorem II.5 we 
established the duality between the 0-lc property of a subcontinuum 
of an orientable w-gm and the (P, Q, ~ ) n - 2 property of its comple­
ment. Using the results established in III we can now give the 
analogous duality for general dimension r and arbitrary closed sub­
sets; for the theorems of §111 translate lc properties into "P , Q" 
properties and one can then use the "P , Q" dualities. 
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THEOREM IV. 1. In order that a closed subset F of an orientable 
w-gm M should be \c\ and have property (P, Q)k, where kSr^n — 2, it 
is necessary and sufficient that M—F have property w_r_2(P, Q, ~)n-k-2 
and that ps(M, F) be ^co for s = k + l, k + 2, • • • , r + 1; when F is 
compact, the conditions on the ps(M, F) are equivalent to each ps(M—F) 
being finite f or s — n — r — \, n — r, • • • , n — k — 1. 

PROOF. By Corollary 111.3, for F to be lei and have property 
(P, Q)k is equivalent to F having property ^(P, Q)r; which, in turn, is 
equivalent, by Theorem 11.7, to M—F having the properties stated 
in the theorem. When M is compact, p,(M, F) = pn-.8(M—F). 

REMARK. When k = 0, it is unnecessary to include the condition 
(P, Q)k since, as remarked before, 0-lc and (P, <2)o are equivalent for 
locally compact sets; thus we have the important special case: 

COROLLARY IV. 1. In order that a closed subset, F} of an orientable 
n-gm M should be lcr, where r is a fixed integer such that Q^r^n — 2, 
it is necessary and sufficient that M—F have property w_r_2(P, Q, ^ ) n - 2 
and that ps(M, F) be ^cofor s = l, 2, • • • , r + 1; when M is compact, 
the latter condition may be replaced by the condition that the numbers 
ps(M—F) are finite f or s = n — r — l, n — r, • • • , n — 1. 

REMARK. Corollary IV.l generalizes Theorem XI.2.1 of [13, p. 320] 
in which the manifold was assumed acyclic from dimensions 1 to 
r + 2. Consider Example 1.2; the set M therein is 0-lc, hence by Corol­
lary IV.l , E* — M has property (P, Q, ~ ) i . The set M has property 
(P, Q, ~ ) i , so that by Theorem II.5, E 3 — F has property (P, Ç, ~ )o . 
Also, p2(E

z — M)—0 (we may consider E 3 compactified by a point 
at infinity). Hence the only part of the conclusion of Corollary IV.l 
that is not satisfied is that pi{Ez — M) is not finite; and this accounts 
for the fact that M is not 1-lc. 

Another instructive example is the configuration shown on p. 340 
of [13], with Sz as the manifold in which it is imbedded; here the set 
F is not 1-lc because Ez — F fails to have property (P, Q, ~ ) 0 . 

The characterization of lcr sets in an n-gm can be given in terms 
of the "P , <2" properties of the complement alone. For this, we need 
the following lemma: 

LEMMA IV.l . If U is an open subset of an n-gm M, then a necessary 
and sufficient condition that U have property (P, Q)n-\ is that pn-i(U) 

PROOF. This is an immediate consequence of Lemma II . l and the 
following lemma: 
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LEMMA IV.la. Every open subset U of an w-gm has property 
(P, <2, ~ ) n - i . 

PROOF. Let P , Q be any canonical pair. We may assume U^M, 
since every n-gm has property (P, Q)n-i> Consider the following dia­
gram: 

&,(üf) Jl >§n(M, P) —» Fn-i(7) 

W)' 
^2 

ti 

^hn{u,vr\p) >hn^(ur\p) 
~~, n kn~i(U) 

hn(u, ur\Q) —> hn^(u n 0 
where the horizontal (and slant) sequences are homology sequences 
and the g's and h's are induced by inclusion. 

Since U^M, hn(U) = 0 and hence d2 and 33 are isomorphisms into. 
Let L = Kern i2; then dzhn(U, UC\Q) « L . Evidently we wish to show 
that gL is f.g. Suppose, however, that gL is not f.g. ; then Im h is not 
f.g. 

Now hr is an isomorphism into. For suppose zÇi.hn{U, Ur\P) such 
that h'z = 0. If zn is a representative cycle of 2, this implies zn is in £ƒ, 
and £n = 0 mod P (since dim M = n), and zn is in P. That is, zn is in 
UC\P and therefore 2 = 0. 

Consequently Im &'& is not f.g. However, P , UC\Q form a canoni­
cal pair and M, being a generalized manifold, has property (P, Q)n~u 
so that Im g'g is f.g. A fortiori, Im dih'h = lm g'gds is f.g. It follows 
that Kern di is not f.g. But then Im j i and hence §n(Af) must not be 
f.g. in contradiction of the fact that dim &n(M) ^ 1.1 

We can now state the following theorem (which generalizes Theo­
rem XI.2.3 of [13, p. 321], in which the manifold was assumed to be 
acyclic in dimensions 1, 2, • • • , r + 2): 

THEOREM IV. 2. In order that a closed subset, P, of an orientable 
n-gcm M should be lcr, where r is a fixed non-negative integer ^n — 2, 
it is necessary and sufficient that M—F have properties w_r_i(P, Q)w-i 
and (P, <2> ~ ) n _ r _ 2 . 

PROOF. By Corollary IV. 1, the lcr property of F is equivalent to 
M—F having property w_r_2(P, Q, ~)w-2 and p8(M—F) finite for 
s = n — r — 1, n — r, • • • , n — l. By Lemma II .1 , these are in turn 
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equivalent to M—F having properties (P, Q, ^ ) w _ r _ 2 , n - r - i (P, Q)n-2 
and pn-i(M—F) finite. By Lemma IV. 1, pn-i(M— F) finite is equiva­
lent to M—F having property (P, Q)n-u so that the combined prop­
erties w_r_i(P, Q)n-2 and pn-\(M- F) finite are equivalent to property 
w_r_l(P, Q)n-V I 

In order to handle the lcw_1 case, we need the following lemma 
(compare Lemma XI.2.4 of [13, p. 321 ]): 

LEMMA IV.2. If F is a closed subset of an w-gm M such that pn-\{F) 
=gco, then F has property (P, Q)n-i', and a fortiori, F is (n — l)-lc. 

PROOF. By Lemma II. 1, it is sufficient to show that F has property 
(P, Ç, ^ ) n _ i ; or, by virtue of the first fundamental duality, tha t F 
has property (P, Q, ~)n. By the second fundamental duality, the 
latter is equivalent to M—F having property (P, Q, ^ ) n + 1 , which it 
has, trivially, since dim M — n\ 

REMARK. It is interesting to note that in the proof of Lemma IV.2, 
it is incidentally shown that every closed subset of an w-gm has prop­
erty (P, <2, ~ ) » . 

THEOREM IV.3. In order that a closed subset F of an orientable w-gcm 
M should be lcw_1, it is necessary and sufficient that M—F have prop­
erty o(P, Q)»-i. 

PROOF OF NECESSITY. Since F is lcn~2, M—F has properties 
i(P, Q)n_i and (P, Q, ~ ) 0 by Theorem IV.2. And since F being lc»"1 

implies pn-i(F) finite, and hence pn(M, F) finite by Lemma 11.4, so 
must po(M-F) be finite by duality. Thus M—F has property 
(P, <2)oby Lemma II .1 . 

PROOF OF SUFFICIENCY. Splitting the property (P, Q)0 of M— F into 
(P, <2, ^ ) 0 and po(M—F) finite, we apply Lemma IV.2 to show that 
F is (n— l)-lc by virtue of the resulting finiteness of pn-i{F). That 
in addition F is lcn~2 follows from Theorem IV.2. | 

Since the case where F is a continuum is of special interest, the 
following theorem is noteworthy: 

THEOREM IV.4. In order that a subcontinuum F of an orientable 
^-gcm M be lcr, where r Sn — 2, it is necessary and sufficient that 
M—F have properties w_r_i(P, Q)n-2 and (P, Q, ~) n - r -2 . 

PROOF. Since F is a continuum, pn-\{M— F) is finite and M— F has 
property (P, Q)n-i by Lemma IV.l . Theorem IV.2 now applies. 

COROLLARY IV.2. In order that a separable subcontinuum F of an 
orientable w-gcm M should be peanian, it is necessary and sufficient 
that M—F have property (P, Q, ^ ) n - 2 . 
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REMARK. For the case where M is the 2-sphere, the classical 
Schoenflies characterization of locally connected continua is a ready 
consequence of Corollary IV. 2. 

V. Duality between a domain and its boundary. The positional 
theorems in §IV have been concerned with the relations between a 
closed set F and its entire complement M—F. However, it is often 
of special importance to know the relations between a single domain, 
£>, in w-space and its boundary, or of the entire closed set to which 
it is complementary. One of the earliest theorems of this type was 
that of M. Torhorst (1921) [7]: If F is a locally connected continuum 
in the euclidean plane, and D is a domain complementary to F, then 
the boundary of D is locally connected. That is, boundaries of domains 
complementary to Peano continua in the plane are themselves 
peanian. 

In 1935, I generalized this theorem to e space as follows [lO]: If 
F is a closed subset of En which is lcn~2, and D is a domain comple­
mentary to F, then the boundary F(D) of D is 0-lc; and in [13, p. 325, 
Theorem 2.19] I extended this to the framework of generalized mani­
folds, in that F may be any lcn~~2 closed subset of a spherelike n-gcm. 
Now since, as we saw in §111, for locally compact spaces the proper­
ties lcn~2 and o(P, Q)n-2 are equivalent, both the Torhorst theorem 
and my generalization essentially assume the 0(P, Q)n-i property of 
F. I t appears, however, that by use of the "P , Q" properties the 
conditions on F can be considerably weakened. For this we need the 
following lemma, whose proof is elementary. 

LEMMA V. l . Let X be a locally compact space and U an open (resp. 
closed) subset of X which is the union of disjoint open {resp. closed) 
sets UQ and U\. Then in order that U have a given type of "P , Q" prop­
erty 7T, it is necessary and sufficient that UQ and U\ each have property IT. 

THEOREM V.l (GENERALIZED TORHORST THEOREM). Let M be an 

orientable n-gcm and F a closed subset of M which has properties 
(P, Q)o [or its equivalent 0-lc] and (P, Ç, ^ ) n - 2 . Then if D is a domain 
complementary to F, its boundary, F(D) is 0-lc. 

PROOF. By Corollary IV. 1, it is sufficient to show that M—F(D) 
has property (P, Q, ~)n-2 and that pn-i(M — F(D)) is finite. 

Since F is compact and 0-lc, po(F) is finite and consequently 
pn-.i(M—F) is finite (cf. Lemma II.4). I t follows that pn-i(D) is 
finite. Now pn^(M-D) ^po(D)+pn-i(M) [17, Theorem 2], and as 
D is connected and pn-\(M) finite, it follows that pn-i(M—D) is 
finite. And since pn-.i(M—F(D))=pn-i(D)+pn-.i(M—D) by Lemma 
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V.l, we conclude that pn-i(M—F(D)) is finite. 
Again, since F is 0-lc, M—-F has property (P, Q, ^ ) n - 2 by Theo­

rem IV.2. And since the sets Dy M—F — D are open, D has property 
(P, <2, ~ ) n - 2 by Lemma V.l . If, then, we can show that M—D has 
property (P, Q, ^ ) n - 2 , it will follow (again by Lemma V.l) that 
M—F(D) has property (P, (?, ~ ) „ - 2 . And to show that M—D has 
property (P, Q, ~)„_2, it is sufficient, by Corollary IV. 1, to show 
that D is 0-lc. ___ _ 

Suppose, then, that D is not 0-lc. Then, since D is a continuum, 
there exist [l3,p. 102,Theorem 2.1] open sets P , P forming a canonical 
pair, and infinitely many components Dv of DC\(P — R) that con­
tain points of both P(P) and F(R). Let Pi , Pi be a canonical pair of 
open sets such that P D P i and RiZ)R> Since D is dense in D and 
hence in the sets Dv, hçi{DC\{P1-'R1) \ Dn(P-R)) must be infinitely 
generated. But this is impossible since by hypothesis F has property 
(P, Q, ~) n_2, so that by the Fourth Fundamental Duality Theorem, 
M—F has property (P, Q, ~ ) 0 and by Lemma V.l , £> has property 
(P, (?, ~ ) o ; and P — R, Pi— R± form a canonical pair of open sets. § 

REMARK. When n — 2, the (P, Ç, ~ ) n -2 condition in the hypothesis 
of Theorem V.l is of course already implied by the other condition. 

Note, too, that if pi{M) = 0 and F is a continuum, then F(D) is a 
continuum ("Phragman-Brouwer property" ; cf. [13, p. 242, Corollary 
9.3]) ; this would be the case if M were the w-sphere, for example. 

COROLLARY V.l. If Mis an orientable closed n-manifold in the classi­
cal sense such that pi(M) = 0 , and F is a Peano continuum in M having 
property (P, Q, ^ ) w -2 , then the boundary of every domain complementary 
to F in M is a Peano continuum. 

The following theorem is in the nature of a dual to Theorem V.l : 

THEOREM V.2. Let M be an orientable n-gcm and U an open subset 
of M having properties (P, Q, ^ ) 0 and (P, Qy ~)n-2 as well as pn-i(U) 
finite. Then the boundary of every component of U is 0-lc. 

PROOF. Let C be a component of U. Then pn-\{C) is finite. Also, 
C has property (P, Ç, ~ ) n - 2 by Lemma V.l . Hence M— C is 0-lc by 
Corollary IV. 1. And since C has property (P, Ç, ^ ) 0 , M—C has 
property (P, Ç, ~ ) n - 2 by the Fourth Fundamental Duality Theo­
rem. Then F(C) is 0-lc by Theorem V.l . g 

REMARK. Theorem V.2 is an "w-dimensional form" of the suffi­
ciency part of the following theorem of R. L. Moore [5] : In order that 
the boundary of a simply connected domain, D, in S2 should be 0-lc, 
it is necessary and sufficient that D have property S. For property S 
is here precisely property (P, Ç, ~ ) 0 (and (P, Q, ^ ) n _ 2 ) ; while the 
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simple connectedness of D is equivalent to p\{D) = 0. (The necessity 
part of Moore's theorem is a corollary of Corollary IV. 1 and Lemma 
V.l) . 

VI. (X, Q)-Properties, semi-r-connectedness, and relations to 
local ^-connectedness. For a compact lcw space to be complex-like in 
dimension ^ + 1, it is not necessary that it be (^ + l)-lc, since a weaker 
condition will suffice; this is the condition of semi-(» +^-connected­
ness [10; 13, p. 167, Definition 19.4]: 

DEFINITION VI. 1. A space X is called semi-r-connected at xÇ^X if 
there exists a neighborhood U of x such that hr(U\X)—0; and X is 
called semi-r-connected if it is semi-r-connected at every point. Semi-
r-coconnectedness is defined analogously. 

Analogous to Theorem III.l we have: 

THEOREM VI.1. If a locally compact space X has property (P, Q,^)r 

and is semi-(r+1)-connected, then it has property (X, Q)r+i* 

REMARK. That one cannot replace "(X, Q)r+i" in the conclusion ol 
Theorem VI. 1 by "(P, Q)r+i" a» in Theorem III.l is shown by the 
configuration of [13, p. 340], which consists of a sequence of hollow 
cones, successively tangent along line elements, and converging to a 
line segment L. This configuration, X, as a subspace of Ez, is 0-lc, 
hence has property (P, Q, ~ ) o ; and hi(X)=0 so that X is semi-l-
connected. But X cannot have property (P, Q)i since it is not 1-lc. 
However X does have property (X, <2)i since hi(X) = 0 . 

The proof of Theorem VI. 1 is similar to that of Theorem III.l, 
although simpler in that the top line of the diagram becomes the 
single term ahn+\(X)." 

COROLLARY VI. 1. If X has property (P, Q, ~)k for some integer 
k^O, is lcj+i for some n>k, and semi-(n + l)-connected, then X has 
properties *+i(P, Q)n and (X, Q)„+i. 

COROLLARY VI.2. Under the hypothesis of Corollary VI.1, pr(X) ^co 
for r = k + l, k + 2, • • • , n + 1. And if X is compact, these numbers are 
all finite. 

At this point we recall the analogue of Theorem III.l for coho-
mology, since it admits of similar extensions: 

THEOREM VI.2. If X has property (P, Q, ~)r+1 and pr(x) Sufor all 
x G I , then X has property (P, Q)r.b 

5 This appears as Theorem VI.7.2. of [13, p. 193], but with "(P, <2)r+1" instead of 
tt(P, Q, ^ ) r + 1 " in the hypothesis. Examination of the proof reveals, however, tha t the 
latter is sufficient. A proof by diagram may be given, of course, similar to that given 
above for Theorem I I I . l ; see, for instance, [2, Proposition 6.2]. 
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COROLLARY VI.3. For locally compact spaces having property 
(P, Q, ^ ) r + 1 , the property (P, Q)r is equivalent to pr(x) ^co at every 
point x. 

To get the analogue of Theorem VI. 1 for cohomology necessitates 
a better perspective on semi-r-coconnectedness. Consider the follow­
ing definition: 

DEFINITION VI.2. Let x £ X and Q an open set containing x. De­
note by pr(x; Q, X) the dimension of hr(Q\X). Then for any open 
set Q' such that x G Q ' C Q , Pr(x; Q', X)^pr(x; Q, X). Let pr(x; oo) 
denote the greatest integer k, if it exists, such that if U is an arbitrary 
open set containing x, there exists an open set Q such that x £ Q C U 
and pr{x\ Q, X) = k. If no such integer exists, then we write pr(x\ <*>) 
= oo. Note that semi-r-coconnectedness at x corresponds precisely 
to the case where pr{x\ oo) = 0 . 

THEOREM VI.3. If X has property (P, Q, ^ ) r + 1 and pr(x; oo) is 
finite f or all xÇz.X, then X has property (X, Q)r. 

COROLLARY VI.4. For locally compact spaces having property 
(P, Q, ^ ) r + 1 , property (X, Q)r is equivalent to pr(x\ oo) being finite f or 
every point x. 

COROLLARY VI.5. If for some non-negative integer k, (1) X has 
property (P, Q, ~ ) * + 1 , (2) pr(x)^œ for all x £ X and r — m, m + 1, 
- - • , k, where 0<m^k, (3) pm~1(x; oo) is finite for all x £ X , then X 

has properties m(P, Q)h and (X, Q)m~l. 

In many theorems concerning compact spaces, replacement of an 
assumption of the finiteness of pr(X) by the assumption that pr(X) 
^co, or its equivalent (X, Q)r, allows of extension to the locally com­
pact case. First let us note the following easily established lemmas: 

LEMMA VI.1. For locally compact spaces X, the following properties 
are successively weaker: (1) pr(X) finite, (2) (X, Q)r, (3) semi-r-
connectedness. 

LEMMA VI.2. For locally compact spaces X, the following properties 
are successively weaker: (1) pr(X) finite, (2) (X, Q)r, (3) pr(x, oo) 
finite for all x G X . 

THEOREM VI.4. In order that X should have property (P, Q)r, l^r, 
it is necessary and sufficient that it have properties (P, Q, ~)r-i and 
(X, Q) ; similarly, (P, Q)r, 0^r,is equivalent to the combined properties 
(P, 0, ~ ) r + 1 and (X, Q)r. 
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PROOF. By Lemma II.2, (P, Q)r is equivalent to properties 
(-P, Q, ^ ) r and (X, Q)r. And by Theorem I LI , the latter properties 
are equivalent to (P, Q, ~ ) r - i and (X, Q)r. 

Let us now inquire what relation exists between the properties 
(X, Q)r and (X, Ç)'? 

LEMMA VI.3. ƒƒ X tes properties (X, Ç)r a t ó (P, <2, ~ ) r - i , tó^n i* 
fes property (X, Ç)r. 

PROOF. Let F be an open subset of X with compact closure, and 
let Q, U, W be open sets such that (1) Q is compact, (2) Q D UD V. 
We wish to show that hr(V\X) is f.g. This is equivalent to showing 
that in the sequence 

hr(V)^hr{U) ^>hr(X), 

Im i2ii is f.g., or, alternatively, that in the dual sequence 

where Hr(X, X— V) and Hr(X, X—U) have been replaced by their 
equivalents (by excision) Hr(Q, Q— V) and Hr(Ü, U—U) respec­
tively. 

Consider the diagram 

Hr-i(Q - V) 

/

/ I 4 

Hr-l(U - U) 

h 
Hr{Q, Q~V) *-±~ Hr(ÏÏ, U - U) <~^~~ $ r (X) where i% and 4̂ are induced by inclusion and the left-hand border is 

a portion of the exact homology sequence of the compact pair Q, 
Q—V. Im iz is f.g. since X has property (X, Q)r and hence Im i*i*H 
= Im j is f.g. Im i^di is f.g. since X has property (P, Q, ~ ) r _ i and 
hence Im i^diif = Im difi* is f.g. Now Kern d~lmj is f.g., and there­
fore Im i?i} must be f.g., else Im difi? could not be f.g. 
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LEMMA VI.4. If X has properties (X, QY and (P, Ç, ~ ) r + 1 , then it 
has property (X, Q)r. 

PROOF. With V, Q, U as in the proof of Lemma VI.3, and W an 
open set such that U—UCWcQ—V, we must show that in the 
sequence 

HrÇV)^>Hr(ÏÏ)^hr(X), 

Im i2ii is f.g. Or, alternatively, that in the sequence 

in which we have replaced IP(X, X—V) by Hr(V), etc., Im i?i<t is 
f.g. 

The proof follows from the following diagram by reasoning analo­
gous to that employed in proving Lemma VI.3. 

hr+1(Q ~ V) 

HQ) 

I t will be noted that as a result of the implications stated in 
Lemmas VI.3 and VI.4, and Theorem VI.4, we have: 

LEMMA VI.S. For any locally compact space X, the combined proper­
ties (P, QY and (X, Q)r-i are equivalent to the combined properties 
(P, <2)r_x and (X, QY. 

THEOREM VI.5. If X has property (P, Ç, ~ ) r - i , 1 ^T, and is semi-r-
connected, then it has property (P, QY-

PROOF. By Theorem VI. 1, X has property (X, Q)r. Hence by 
Lemma VI.3, X has property (X, QY- The conclusion now follows 
from Theorem VI.4. 
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REMARK. Theorem VI.5 is an extensive generalization of Corollary 
XI.3.8 of [13, p. 330], to the effect that if a compact space is lcw, 
then it has property (P, Q)n. Also it is of interest to compare Theo­
rem VI.S with Theorem 111.1; the combined theorems imply that 
if a locally compact space X has property (P, Q, ~)n and is (n + l)-lc, 
then X has both property (P, Q)n+i and property (P, Q)n+1. 

COROLLARY VI.6. If X has property (P, Q, ~ ) r _ i and is scrni-r-
connected, 1 ^r, then pr(x) ^cofor all x(E:X. 

REMARK. Corollary VI.6 is a generalization of Theorem VI1.2.26 
of [13, p. 211] to the effect that if X is lcwand semi-(w + l)-connected, 
then pn+1(x) ^o) for all x £ X . Of special interest in this connection is 
the fact that this leads to a generalization of a theorem stated in 
[14, Theorem 1 ] showing that if X is lcn, then it has no w-dimensional 
condensation; and if in addition X is semi-(^ + l)-connected, then 
it has no (w + l)-dimensional condensation. For in view of the Remark 
following Theorem VI.5, an lcn space has property (P, Q)r for all 
rSn, while property (P, Q)n alone is sufficient to compel pn(x)S& 
for all xÇzX and hence (see [13, p. 358, Corollary 1.12]) lack of n-
dimensional condensation. Moreover, in view of Corollary VI.6 we 
can state: 

COROLLARY VI.7. If X has property (P, Q, ~ ) n and is semi-{n + l)-
connected, then X has no (n + 1)-dimensional condensation. 

THEOREM VI.6. If X has property (P, Q, ^ ) r + 1 and pr(x, <*>) is 
finite f or all x G X , then X is r-lc and, moreover, has property (P, Q)r. 

PROOF. By Theorem VI.3, X has property (X, Q)r. By Lemma VI.4, 
X has property (X, Q)r. And since, by Theorem I I . l , property 
(P, Q, ^ ) r + 1 is equivalent to (P, Q, ~ ) r , the latter property together 
with (X, Q)r gives property (P, Q)r by Lemma I I . l . | 

For the equivalences which follow, we shall use the following sym­
bols: To denote that two properties 7Ti and 7r2 are equivalent, we 
write 7Ti<=>7r2; and to denote that properties 7Ti and 7r2 combined are 
equivalent to a property 7r3, we write 7ri+7r2<=>7r3. By 7ri=»7r2 we mean 
that 7Ti implies 7r2. 

THEOREM VI.7. For every X and r^l, 

(P, QY + (P, Q, ~)H-i « (P, Q)r + (P, Q, ~ ) , - i . 

PROOF. By Lemmas I I . l and 11.2 this is equivalent to proving that 

(P, Q, ~Y + (X, QY + (P, Q, ~ ) r + 1 

<=> (P, Q, ~ ) r + (X, Q)r + (P, Q, ~ ) , - l . 
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To show this, we recall that by Lemma VI.4, 

(P,Q,~)1+1+(x,Q)r=*(x,Q)r 

and that by the First Fundamental Duality Theorem, 

cp,e,~)r+i^cp,e,~)r, 

Thus => holds. To show that <= holds, we use the reverses of the last 
two relations above and the relation 

(P,Q,~)r-l+(X,Q)r=*(X,Qy 

of Lemma VI.3. 
Analogous to Theorem 111.3, we can now state: 

THEOREM VI.8. For every locally compact space X, the following 
properties I—III are equivalent, where k<n: 

i. (p.Q^+icî+x+c^e)^, 
II . *(P, Q)n + (X, Q)»+\ 
I I I . *+i(P, <2)*+1 + (X, Q)h. 
PROOF. Tha t I«=>II follows as in Theorem III .3 . 
To show that II=>III, we first note that (P, Q)k=>(X, Q)k trivially. 

Also, r (P , 0)r+i=>(P, Q)r+l for r = k, k + l, • • • , w - 1 , by Theorem 
VI.7, so that 4(P, Qîn^+K-P, 0 W . And finally, (P, <2)„ + (X, Q)»+i 
=»(P, <2)w+1 by Theorem VI.4. 

That III=>II follows similarly from Theorems VI.4 and VI.7. 

THEOREM VI.9. If X has property (P, Ç, ~)k and is lc£, k^n, then 
X has properties *(P, Q)n and *(P, Q)n. 

PROOF. When k = 0, the (P, Q)0 and (P, Q)° properties follow from 
the 0-lc and the i(P, Q)n and *(P, Q)n properties follow from the First 
Fundamental Duality Theorem and the Remark following Theorem 
VI.5. When £ > 0 , the properties follow from the First Fundamental 
Duality Theorem and the Remark following Theorem VI.5. 

THEOREM VI.10. If X has property (P, Q, ~ ) n + 1 , then in order that 
X have property (P, Q> ~)k and be le", k ^n, it is necessary and suffi­
cient that pr(x) ^co j'or all x £ X and r = k, £ + 1, • • • , n. 

The necessity follows from Theorem VI.9, since property (P, Q)r 

implies pr(x) ^œ for all x. 
To prove the sufficiency: By Theorem VI.2, X has property 

*(P, Q)n, and a fortiori k(X, Q)n\ and since X also has property 
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*+1(JP, Q, ~)n+\ p'(x, oo) is finite for all xE.X by Corollary VI.4. 
Then by Theorem VI.6, X is lc£. 

COROLLARY VI.8. In order that an n-dimensional locally compact 
space X should have property (P, Q, ~)k and be le", k ^n,it is necessary 
and sufficient that pr(x)^co for all x £ X and r = k, k + l, • • • , n. 

THEOREM VI. 11. For every X the following equivalence holds: (P, Q)r 

+ [pr(x) gu for all xEX]**(P, QY+r-lc. 

PROOF. The case r = 0 is trivial. For r > 0 , the =» is a consequence 
of Theorem VI.2 and the First Fundamental Duality Theorem, and 
the fact that (P, Ç)r=»r-lc. The «= follows from Theorem III . 1 and 
the First Fundamental Duality Theorem, and the fact that (P, Q)r 

=$pr(x) ^co for all x g l . 

VII. Relations with uniform local connectedness. We recall (see 
[13, p. 292, Definition 1.6]) that an open subset U of a space X is 
r-ulc ( = uniformly locally connected in dimension r) if for arbitrary 
covering U of X (by open sets) there exists a refinement 93 of U 
such that if Zr is a compact cycle (augmented) of U of diameter 
<93, then Zr bounds on a compact subset of U oi diameter <U. For 
open subsets of locally compact spaces, 0-ulc and "ulc" (see [13, 
p. 109, Definition 4.7]) are equivalent, so that in such spaces, r-ulc 
is a generalization to arbitrary dimension of ulc. 

I t was shown in 1922 by R. L. Moore [5] that if an open subset 
U of a compact space X is ulc, then U has "property 5" and hence 
property (P, Q)o. In [13] this result was generalized in the following 
manner: I t was first shown that if an open subset U oi a regular space 
X is r-ulc, then qr(U, x) = 0 for every x G J . 6 I t was then shown that 
if U is a ulc* open subset of an orientable w-gcm M, then U has 
property o(P, Q)k.7 And later [13, p. 330, Theorem 3.13] it was shown 
that if an open subset U of an orientable n-gcm M (which is acyclic 
in dimensions n —r —3 to n — r) has property (P, Q)r, for some r such 
that O^r^n — 3, and qr+i(U, x)^œ for all xÇiTj, then Z7has property 
(P, Q)r+i* Both of these latter two results can be generalized to spaces 
that are not necessarily manifolds, as follows: 

8 The numbers qr( U, x) correspond to the numbers "qr( U, x)" of [13, pp. 291-292 ]. 
For the result cited here, see [13, p. 293, Lemma 2.3]. 

7 See [13, p. 346, Theorem 6.8]. The symbols "ulcfc" and "ulc"" are denned 
analogously to the symbols "lcfc" and "lc£". The converse of the result cited here does 
not generally hold, in that an open subset of an orientable n-gcm may have property 
o(P, Q)k yet not be ulcfc; a simple example is the bounded domain U in 3-space whose 
boundary is the unit sphere K together with the set of points interior to K on the 
rry-plane for which y>0. 
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THEOREM VI1.1. If U is an open subset of the locally compact space 
X, and U has property (P, Q, ~)k while Qk+iCU, x) ^co for all x £ U, 
then U has property (P, Q)k+i', and if U is compact, then pk+i(U) is 
finite. 

PROOF. For any canonical pair P , Q, we notice that each xGG lies 
in a pair of open sets P ' , Q' such that PDP'DQ' and such that 
hk+i(Ur\Q'\ UC\P') is f.g. A finite union of such sets Q' covers UC\Q 
(since Q is compact), and the type of induction process employed in 
proving Theorems I I I . l and VI.2 may be adapted to complete the 
proof. 

COROLLARY VI1.1. If U is an open subset of X having property 
(P, Q, ~)k, then for U to have property &+i(P, Q)n it is necessary and 
sufficient that qr(U, x) ^ufor all xÇjJ and r = £ + l, fe + 2, • • • , n. 

PROOF. The sufficiency is a consequence of Theorem VILI , using 
a step-wise process. The necessity results from the fact that the 
(P, Q)r property is stronger than the requirement of qr(x) gco, the 
latter being essentially a localization of the former. 

The following corollary bears a strong analogy to Theorem 111.2: 

COROLLARY VII.2. If the open subset U of X has property (P, Q)h 
and is ulcSJ+1, k<n, then U has property ^(P, Q)n. 

PROOF. AS remarked above, for U to be r-ulc implies that qr(U, x) 
= 0 for all x(EzU. We may then apply Corollary VI 1.1. 

Since, if an open subset of a locally compact space is ulc, then it 
has property (P, Q)o, we may therefore state: 

COROLLARY VII.3. If an open subset U of X is ulcn, then U has 
property o(P, Q)n. 

However, although Corollary VI1.3 provides the natural, obvious 
extension of the theorem of Moore cited, it will be noticed that even 
for k = 0, Corollary VII.2 is actually stronger (since property (P, 0 o 
need not imply 0-ulc). 

Again using the method of proof indicated above for Theorem 
VI 1.1, we obtain: 

THEOREM VII.2. If U is an open subset of X} and U has property 
(P, <2, ~)k+l while pk(U, x)^œ for all xGÏÏ , then U has property 

(The numbers pk(U, x) are defined in [13, p. 291 ], although as 
usual we here change the position of the dimensional index to con­
form to current usage.) 
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COROLLARY VI1.4. If U is an open subset of an n-dimensional 
locally compact space such that pr(U, x)^co for all xÇiU and 
r = k, k + 1, • • • , n, then U has property k(P, Q)n. 

VIII. Applications to continuous mappings. I t is well-known that 
continuous mappings of compact locally connected spaces yield only 
locally connected spaces; and that the analogue holds for (w —1)-
monotone mappings of lcn spaces, we showed in [15, Theorem 2]. 
Using "P , Q" properties, these results may be substantially general­
ized. 

First we recall tha t if X and X' are locally compact spaces, then 
a mapping ƒ(X) —Xr is called proper if counter-images of compact 
subsets of X' are compact. Also, that ƒ is called n-monotone if all 
counter-images of points of X' are r-acyclic for r = 0, 1, • • • , n. 

THEOREM VII I .1 . Let f(X)=X' be a continuous, proper, (n — 1)-
monotone mapping of a locally compact space X onto the locally compact 
space X''. If X has property (P, Q)n, then X' has property (P, Q)n. 

PROOF. See the proof of [IS, Theorem l ] ; or use left-hand portion 
of the diagram used in the proof of Lemma IX. 1 below. 

THEOREM VIII.2. Let X have property (P, Q, ~)rfor some r^O, and 
be (r + l)-lc. Iff(X) =Xf is a continuous, proper, r-monotone mapping 
of X onto the locally compact space Xr, then X' has property (P, Q)r+i* 

PROOF. By Theorem I I I . l , X has property (P, Q)r+i. By Theorem 
VI11.1, X' has property (P, Q)r+1. 

COROLLARY VI I I . l . Under the same hypothesis as Theorem VI11.2, 
X' is (r + l)-lc. 

COROLLARY VIII .2. If X has property (P, Q, ~ ) r , is lcf+1 (r<k), 
and f(X) =X; is a continuous, proper, (k — 1)-monotone mapping of X 
onto the locally compact space X', then X' is lcf+1. 

IX. Application to spatial decompositions. In [12] I studied de­
compositions of compacta into ^-prime parts, the latter being the 
components of the closure, S, of the set, S, of ^-singular points and 
the points not in S. A ^-singular point is a point at which a given 
local topological property \p fails to hold. Of special interest is the 
property \f/r of being r-\c. A property \(/ is called expansive relative to 
a class r of spaces if for X £ T , the failure of X to have property \[/ 
at some point implies that the set S of X has nondegenerate com­
ponents. In particular, the property tyn+i is expansive relative to the 
class C%+1 of compacta that are lc71 and have finite (n + 1) -dimensional 
Betti numbers. 
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As a consequence of results stated above, we may give the follow­
ing generalization: 

THEOREM IX. 1. The property ypn+i of being {n + \)-\c is expansive 
relative to the class P„+1 of compact spaces that have property (P, Q, ~)n 

and are semi-(n + 1)-connected. Moreover, every \pn+i-singular point of 
an element X of P£+ 1 lies in a nondegenerate component of the closure 
S of the set S of \pn+\-singular points of X. 

PROOF. Let XE:Fn+1 and x £ I a point at which X is not (n + 1)-
lc. By Theorem VII.2.24 of [13, p. 210], there exists an open set U 
containing x such that for every pair V, W of open sets for which 
xGWCWCVCVCU, hn+l{F(V)\U-W) is infinitely generated. 

Suppose that the component of 5 determined by x contains only 
x. Then [13, p. 100, Theorem 1.2] there exists an open set V con­
taining x such that VC.U and such that Sr^F(V) = 0. And since 
[{X— U)yj?>]r\F(V) = 0 , there exists an open set Q containing 
F(V) such that QCU-S. Let U'= VUQ and W= V-Q. Then F(V) 
is a compact subset of the locally compact subspace £/' — W; and the 
latter space has property (P, Q, ~)n and is (n + l)-lc. Hence by 
Theorem I I I . l , U'— W has property (P, Q)w+i. I t follows that 
hn+i(F(V)\ U—W) is f.g. But this is impossible because of the prop­
erty of U stated above. 

For the next theorem, we need the following lemma: 

LEMMA IX. 1. The property (P, Q, ~)n is invariant under continuous, 
proper, n-monotone mappings of locally compact spaces; and hence by 
the First Duality, (P, Q, ^ ) w + 1 is also invariant. 

PROOF. Let f(X)=X' be a continuous, proper, w-monotone map­
ping of the locally compact space X, and suppose X has property 
(P, Q, ~ ) n . Let P ' , Qf be a canonical pair of open sets of X', and let 
P=f-i(P>)9 Ç=jf-i(Q'). In the diagram 

K(Q) -^ hn(P) ^ hn(X) 

1* U2 1 * 
• / • t 

*»(G') -i W ) -i hn(X') 
where the i's are induced by inclusion and the ƒ s by the mapping ƒ, 
the ƒ s are isomorphisms. And if K = K e r n e l and L — iiK, then L 
must be f.g. since X has property (P, Q, ^ ) w . Hence if K' = Kern i{i{ 
and V=i{Kf, L' must be f.g. 
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THEOREM IX.2.8 If X G P £ + 1 0»d the x/zn+i-prime parts of X are 
r-acyclicfor r = 1, 2, • • • , nf then the (quotient) space X1 of \//n+i-prime 
parts of X is (n + l)-lc. 

PROOF. By Theorem IX. 1, \[/n+i is expansive relative to P£+1. By 
Lemma IX. 1, X' has property (P, Ç, ~ ) n . By Corollary VI.2, 
pn+1(X) is finite and hence pn+l(X') is finite [ l ] . I t follows that X' is 
semi-(w + 1)-connected [13, p. 168, Corollary 19.5], and X'GPJT1"1. 
The theorem now follows from Theorem 1 of [12], 

THEOREM IX.3.9 Let k and n be integers such that —2<k<n. Then 
the property ^J+ 1 of being lc£+1 is expansive relative to the class P£ of 
compact spaces that have property (P, Q, ~)k and finite r-dimensional 
Betti numbers for r = k + l, • • • , n. And if X £ P J ! and the \l/"+1-prime 
parts of X are r-acyclic for r = l , 2, • • • , w—1, then the (quotient) 
space of \f/l+rprime parts of X is lc?+1. 

PROOF. If X were not (fc + l)-lc, then by Theorem IX. l it would 
have a nondegenerate ^fc+i-prime part and a fortiori a nondegenerate 
$£+1-prime part. Let m be the largest of the numbers £ + 1, £ + 2, • • • , 
n such that X is r-lc for r = k + l, • • • , m and suppose that k + Km 
<n (the case m = k + l having been disposed of). Then by Theorem 
III.2, X has property (P, Q, ~)m> and by Theorem IX.2 it has a 
nondegenerate ^m+i-prime part and a fortiori a nondegenerate $J+i-
prime part. 

If XÇ.PÎ and the natural map of X into the space X' of $Ê+1-prime 
parts of X is (n — l)-monotone, then X'^PJ, as may be shown by 
methods similar to those used in proving Theorem IX.2. I t follows 
[12] that X' is lcî+1. 

X. Miscellanea. In this concluding section are listed some miscel­
laneous remarks. First, in our introductory comments, we remarked 
upon the historical connection between 0-lc and (P, Q)o, and later 
made use of the general equivalence of lcw and 0(P» Q)n- Since the 
latter is by definition the property that hr(Q\P) is f.g. for every 
canonical pair P , Q and r = 0, 1, • • • , w, it follows by duality that 
in the mapping Hr(X, X—P)—>iHr(XJ X — Q) induced by inclusion, 
Im i is f.g.; or, using the symbols of [13, p. 166] (with appropriate 
change in position of dimensional index) that the group 
Hr(X: X, X—P; X, X — Q) is f-g- I t is interesting to observe, how­
ever, that the analogous statement holds for homology. More gen­
erally, we have the following theorem: 

8 Compare Theorem 3 of [12]. 
9 See Principal Theorem in [12]. 
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THEOREM X . l . If the locally compact space X has property (P, Q, ~)k 

and is lc", k^n, then the groups Hr(X:X, X—P; X, X — Q), r — k, 
k + 1, • • • , n aref.g.; and if, in addition, X is semi-(n + l)-connected, 
the same holds for r = n + l. 

PROOF. By Theorem VI.9, X has property *(P, Q)n, so that for 
every canonical pair P , Q, the groups hr(Q\P) are f.g. for r = k, 
k + 1, • • • , n. The first half of the conclusion of the theorem now fol­
lows by duality. 

Again by Theorem VI.9, X has property (P, Q)n and a fortiori 
(P, Q, ~ ) n ; and if X is semi-(n + 1)-connected, then X has property 
(P, Q)n+1 by Theorem VI.5. The second half of the conclusion of the 
theorem now follows. J 

Secondly, we recall the original Vietoris theorem [8] to the effect 
that the group Hr(X) of a compact metric space X has a countable 
fundamental system of elements Z\ such that each element of Hr(X) 
is expressible in a natural manner (using the topology of Hr(X)) as 
an infinite polynomial in the Z\ with coefficients in the basic field. 
This result was extended in [13, p. 189, Theorem 5.8] to all compact 
spaces that are imbeddable as Gs's in locally compact lcn spaces 
where r^n. As a consequence of Theorem II I . l above, and using 
precisely the same arguments as in [13, p. 186, Theorem S.l] and 
[13, p. 189, Theorem 5.8], we have: 

THEOREM X.2. If the compact space X is imbeddable as a G s in a 
locally compact space S which has property (P, Q, ~ ) r _ i and is r-lc, 
r > 0 , then Hr(X) has a countable fundamental system \Z\\ of elements 
and Hr(X) has a base [Z]} such that Z\-Z)^h\. 

Thirdly, and finally, it was pointed out to me by Dr. John Gary 
that the proof of Theorem I I I . l goes through just as well if it only be 
assumed that "sufficiently small" canonical pairs satisfy the 
(P, Q, ~)n condition. In order to make this precise, we may proceed 
as follows: 

DEFINITION X . l . If (g is a covering of X by open sets, then a 
canonical pair of open sets P , Q, will be said to be of diameter < © 
if there exists E G S such that PCE-

DEFINITION X.2. A space X has a given "P , Q" property TT re­
stricted by a covering © if X has property T for every canonical pair 
P , Q of diameter <@. When X has a given "P , Q" property restricted 
by some covering (g, we may indicate this by saying that X has the 
property in the small. 

THEOREM X.3. The properties n-\c, (P, Q)n in the small, and 
(P, Q)n are successively stronger f or locally compact spaces. 
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PROOF. Tha t (P, Q)n=*(P, Q)n in the small =$n-\c follows easily. 
That the converse of the first implication does not generally hold is 
shown by the space X defined in Example III . 1 ; for here X has prop­
erty (P, Q)i in the small but does not have property (P, Q)\. That 
the converse of the second implication does not generally hold is 
shown by the configuration M oi [13, p. 237, 7.15], which is 1-lc but 
does not have property (P, Q)\ in the small. | 

The proof of Theorem I I I . l goes through as before even if the 
assumption of " (P , Ç, ~ ) » " in the hypothesis is replaced by 
"(P, Q, ~)n in the small," provided that the sets P(x) are all taken as 
of diameter <(§, where © is a covering of X such that X has property 
(P, Q, ~)n restricted by S. I t will also be found that other theorems 
above can be subjected to a similar modification, as for instance 
Theorems III.2, VI .1 , VI.2 and VI.3. 
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