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Toeplitz forms and their applications. By Ulf Grenander and Gabor 
Szegö. California Monographs in Mathematical Sciences, Univer­
sity of California Press, 1958. 7+245 pp. $6.00. 

This book owes its timeliness, and much of its importance and 
unique charm to one particular quality which sets it apart from other 
research monographs. Its two authors have accomplished a successful 
synthesis of two important mathematical developments. One of these 
is the theory of Toeplitz forms, the other, more recent one, the theory 
of (wide sense) stationary stochastic processes. 

The theory of Toeplitz forms has its roots in the work of Toeplitz, 
Féjèr, Carathéodory, F. Riesz on trigonometric series and harmonic 
functions. In two important papers (Math. Zeitschrift, 1920) G. 
Szegö unified and extended much of their work by creating a theory 
the central ideas and results of which also form the core of the present 
book. In other words, concepts and methods created forty years ago 
have now gained new interest as the analytical techniques in a branch 
of mathematics (prediction and estimation theory for stationary sto­
chastic processes) which did not then exist. This remark could not 
have been made in 1939, when a brief account of the theory of 
Toeplitz forms first appeared in Szegö's book Orthogonal polynomials, 
but in any event the present treatment goes further and deeper. We 
mention in particular the new topics of the trigonometric moment 
problem (Chapter 4) and a chapter on applications to analytic func­
tions (Chapter 5). To avoid confusion, it should be said at once that 
the book is divided into two parts; Part I (Chapters 1 to 8) deals 
with the theory of Toeplitz forms, and Part II (Chapters 9, 10, 11) 
is devoted to probability and statistics, with the exception of the 
above mentioned Chapter 9. 

In the theory of Toeplitz forms the Fourier Stieltjes coefficients ck 

of a distribution function a{6) on [0, 27r] are used to define the 
Toeplitz matrices Tn = (Cj-i), i, j = 0, 1, • • • , n. Since a{ff) is real and 
nondecreasing, the quadratic forms associated with these matrices 
are Hermitean positive definite (this restriction, and its regrettable 
consequences from the point of view of certain applications will form 
the subject of later remarks). The principal problems of the theory are 

(a) The minimum problem, which in its simplest form asks for the 
minimum ixn of the quadratic form uTnu where the vector u 
= (wo, # ! , • • • , un) is subject to the restriction w0 = l . The answer 
to this famous problem (in Chapter 3) is that the sequence fxn con-
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verges to the geometric mean of the (almost everywhere existing) 
derivative of a(6). 

(b) The eigenvalue problem, which seeks to describe the distribution 
of the eigenvalues of Tn for large n. The simplest and best known, but 
by no means the sharpest of the answers obtained in Chapter 5, is 
that the fraction of eigenvalues located in an interval tends to the 
«-measure of the interval. 

Both problems, as well as extensions of them, which motivate 
Chapter 6 and parts of Chapters 7 and 8, are answered within the 
framework of a unified and extremely elegant theory. I t turns out 
that, if the components of the minimizing vector u in problem (a) are 
taken as the coefficients of a trigonometric polynomial <t>n{z), z — eie, 
these polynomials are orthogonal with respect to the weight function 
da(6). Chapter 2 is devoted to the elementary theory of such poly­
nomials which are orthogonal on the unit circle, and Chapter 3 con­
tains very deep results concerning their asymptotic behavior as n 
tends to infinity. This is the most important part of the book, as the 
degree of refinement of the solutions to problems (a) and (b) and, as 
the reader will find, also of the statistical theory in the second part 
of the book, stands in direct proportion to the extent of one's knowl­
edge about the polynomials <fin(z)-

With the exception of a few pages Chapter 10 is an exposition of 
the theory of least squares prediction for stationary (both discrete 
and continuous time) stochastic processes. A misleadingly simple but 
true statement of the connection between the prediction problem 
and the theory of Toeplitz forms is that the prediction problem is 
equivalent to our earlier problem (a), where the matrix Tn has to be 
replaced by the matrix 2?» = (r»-y), i, j~0, 1, • • • , n; r»y = r|»-__y| being 
the covariance function of the process. Actually this reformulation 
of the problem requires deep but well known results from functional 
analysis, and already in Doob's book Stochastic processes the predic­
tion problem is formulated in the way described. The simplicity and 
lucidity of the present treatment, which goes beyond Doob's in a 
few respects, (for example, the predictor is given both in terms of the 
moving average and spectral representations of the process), is due 
to Grenander's observation, that the prediction problem had been 
solved by Szegö in 1920. In other words, for prediction one unit time 
ahead, the predictor turns out to be that linear function of the last n 
observations, whose coefficients are essentially those of the orthogonal 
polynomial <t>n(z). The predictor for an infinite past, as well as the 
mean square error of the prediction, both emerge as corollaries of the 
theory of Toeplitz forms. Helson and Lowdenslager have recently 
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(Acta Math., 1958) extended the solution of problem (a), and thereby 
parts of prediction theory from one dimension to two. 

Chapter 11 is devoted to a very condensed account of some topics 
in the modern theory of statistical inference for stationary processes. 
Much of the pioneer work in this field is Grenander's own (Arkiv for 
Matematik 1950 and 1952). A particularly elegant application of 
Toeplitz forms is the derivation of the asymptotic mean square error 
of the best linear estimate of the mean value of a process, in §11.3. 
Another area of application which is not quite of the simple type: 
autocorrelation matrix = Toeplitz matrix, is the theory of the dis­
tribution of quadratic forms of normal variâtes (§11.5), which has 
considerable importance as a means for estimating the spectral den­
sity of a process. I t seems that some of the theoretical developments 
in Chapters 7 and 8 were inspired by the practical requirements of 
this statistical problem. However, the reader looking for additional 
motivation in §11.5 will be severely disappointed by the terse remark 
that "there are reasons why this function (the estimate of the spectral 
density) should be a quadratic form." Grenander and Rosenblatt's 
1957 book Statistical analysis of stationary time series complements the 
theory on this and other points in Chapter 11. 

The reviewer feels quite critical vis-à-vis one single aspect of this 
book. We refer specifically to §10.16, where a certain random walk 
problem is discussed, "in order to give the reader an idea of how and 
why Toeplitz forms are useful for certain other probability problems." 
Only a few years ago the authors could not have written this passage, 
as it is based on recent work of Kac (Duke Math. J., 1954). But by 
now, in 1958, enough evidence has mounted up to show that not only 
can the problem treated in §10.16 be carried much farther than it has 
been, but also that it demands a careful reinterpretation and exten­
sion of some of the principal theorems in the theory of Toeplitz forms. 

Following Kac, the authors discuss the stochastic process o» 
= Xi+ • • • + X n , where the Xi are identically distributed, inde­
pendent lattice random variables. I t is then clear that if Ck — Pr [X{ = k], 
the matrices Tn = (cj-i), i, 7 = 0, 1, • • • , n, are of the Toeplitz type. 
The theory of Toeplitz forms can now be, and is invoked (by an argu­
ment the real point of which is to substantiate remark (i) below) to 
derive a simple expression for the conditional expectation 

E[Mn\Sn = 0] 

where the random variables Mn are defined by Mn = max (0, 5i, • • •, 
Sn). But the method used was never designed to obtain such results, 
and we shall indicate how one can now do much better. 
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It is easy to verify that the probability Pr [ikfw^&] is the limit, as 
m-~* oo, of the sum of the &th row of the matrix Tm raised to the nth 
power. But as the nth power of a finite Toeplitz matrix is not a 
Toeplitz matrix, one must take generating functions instead, so that 
Pr [ M n ^ £ ] is the coefficient of Xn in lim,».^ XXo [ƒ—^m]**1- As 
I — \Tm is a Toeplitz matrix, this explains why a class of probability 
problems can be reduced to the problem of inverting a Toeplitz matrix. 

Indeed the theory of Szegö leads to a very simple inversion method 
for finite Toeplitz matrices, which differs from, and is in some respects 
simpler than the standard method based on the spectral theorem for 
Hermitean matrices. Let Tn be a sequence of Toeplitz matrices whose 
associated orthonormal polynomials are <j>n{z). It is very simple to 
derive from equation (7) in §2.2 the result that the (k, j)th element 
of the inverse of Tn is the coefficient of zkâJ' in J^JL0 <t>v(z)(j>v(a). T h e 
usefulness of this result is directly due to the theorems describing 
the asymptotic behavior of the polynomials 4>n(z) in §3.5. Indeed it 
turns out that the reviewer's theory giving the distribution of Mn for 
arbitrary random variables (Trans. Amer. Math. Soc , 1956) when 
specialized to symmetric lattice random variables, is obtainable as a 
simple corollary of theorems in Chapter 3. 

The problem discussed strongly suggests the desirability, and even 
the possibility, of extending parts of Szegö's theory to nonsymmetric 
Toeplitz matrices. As the above argument uses the method of hind­
sight, and could not possibly have been included in the book, we 
conclude with two more items of evidence to the same effect which 
could, and perhaps should have been included. 

(i) The paper of Kac, quoted above, leads to a very startling and 
profound conclusion, quite different from the less interesting analyti­
cal details discussed in the book. It demonstrates that some of the 
deepest theorems concerning the distribution of eigenvalues (problem 
(b) above), can be interpreted as theorems in probability, and can be 
proved by methods outside the theory of Toeplitz forms which do not 
depend on the symmetry of the Toeplitz matrices involved. As a 
particular example we mention equation 11 in §5.2, which is one of 
the basic results in the equidistribution theory. I t remains valid for 
all sequences of Toeplitz matrices Tn (Hermitean or not) with the 
property that X)"* \ck\ < <*>. 

(ii) The most famous result on inversion of Toeplitz matrices is 
Wiener's Tauberian theorem for trigonometric series. If viewed in 
the proper light, it gives necessary and sufficient conditions for the 
existence of an inverse of a doubly infinite Toeplitz matrix T-(ci-j), 
*»i —0, ± 1 , ± 2 , • • • , again with X)-« \ck\ < °°> viewed as an oper-
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ator on the space of bounded sequences. This theorem again has noth­
ing to do with symmetry, and that seems important as we have seen 
that the nonsymmetric inversion problem arises naturally in proba­
bility theory. Unfortunately the analogous problem for one-sided 
infinite Toeplitz matrices was not yet solved when this book was writ­
ten.1 

The book is authoritatively documented by means of an appendix 
of 10 pages, providing references as well as remarks which clarify 
the mathematical or historical setting of important ideas in the text. 
The mathematical presentation is of the same high caliber as in 
Szegö's Orthogonal polynomials, but even more elegant because the 
subject matter here is so much more unified. Most of the background 
theory required in the book is relegated to an introductory chapter. 
Therefore there are no digressions from the natural development of 
the theory, and this has enabled the authors to write in a terse but 
at the same time pleasingly informal style. 

Not only good students but also serious research workers may find 
this book difficult if they want to fully bridge the conceptual gap 
between the two fields which are unified here. But as the book offers 
so much more than would two separate monographs in the corre­
sponding subjects of analysis and probability, this is precisely the 
challenge it offers to the reader. The content of the book is evidence 
enough that this challenge will contribute to the growth of mathe­
matics. 

F. SPITZER 

Contributions to the theory of games', vol. I I I . Ed. by M. Dresher, A. W. 
Tucker and P. Wolfe. Annals of Mathematics Study, no. 39. Prince­
ton, Princeton University Press, 1957. 8+435 pp. $5.00. 

This is the third volume in a series on the theory of games, a series 
which can teach an interesting lesson in mathematical publication 
applicable to other branches of mathematics. The present volume, 
as the preceding volumes, is made up of a number (twenty-three in 
this instance) of individual papers on the theory of games grouped 
into five general classifications. The volume is prefaced by an intro­
duction which briefly explains this classification and then gives brief 
summaries of the individual papers. The would-be reader can decide 
from these summaries what papers he wishes to read. No one not 
interested in game theory need enter these portals and waste his time. 

1 Added in proof. The continuous analogue of this problem is famous under the 
name of the Wiener-Hopf equation. It was recently solved by M. Krein (Uspehi 
Mat. Nauk, 1958). 


