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denotes the nth prime, then pn+i<2pn. Legendre conjectured, but no 
one has ever proved, that pn+i—pn<p]/2 for all sufficiently large n. 
Hoheisel in 1930 established the existence of a number a, 1 —1/33000 
< a < l , such that pn+i—pn<Pn> The exponent a was successively di­
minished by Heilbronn in 1933, by Tschudakoff in 1936 and by Ing­
ham in 1937. Ingham obtained a = 5/8 and also a somewhat smaller 
value. The proofs of these and related results make use of the theory 
of the density of the zeros of the zeta function. In Chapter Nine the 
machinery of this theory is developed. Applications are given also to 
the work of Linnik (1943, 1945), Rodosskii (1949), Tatuzawa (1950) 
and Haselgrove (1951) on the distribution of primes in "short" arith­
metic progressions. Further applications concern the estimation of 
f(l/2+d f w). 

The crowning achievement of the last chapter is the deep theorem 
of Linnik: Let k*t2> (I, &) = 1, Kk, and let p\(k, I) be the smallest 
prime in the arithmetic progression nk+l, n — 1, 2, • • • . Then there 
exists a constant C independent of k such that p\{k, I) <kc. The awe-
inspiring proof involves forty pages and twenty-one lemmas. 

The book closes with an Appendix. This contains a brief summary 
of pertinent theorems and formulae from the theory of functions. 

The author is to be congratulated for having written an important 
and valuable book. The House of Springer is to be congratulated on 
a superb example of the art of mathematical printing. 

ALBERT LEON WHITEMAN 

Neue topologische Methoden in der algebraischen Geometrie. By F. Hirze-
bruch. Ergebnisse der Mathematik und ihrer Grenzgebiete, New 
Series, vol. 9. Springer, 1956. 165 pp. DM 30.80. 

This book, devoted to the topological transcendental theory of 
algebraic varieties over the complex field, should rank with Lef-
schetz's VAnalysis situs et la géométrie algébrique, Paris, 1924, and 
Hodge's Harmonic integrals, Cambridge, 1941, as a milestone in the 
development of the theory. While topology plays the essential rôle 
in Lefschetz's book and Hodge's main tool is harmonic differential 
forms, this book is characterized by the diversity of deep and difficult 
results which the author drew for his use. These include, among 
others, Todd's genus, Thorn's algebra, and Kodaira's work on com­
plex manifolds. Sheaves (or stacks or faisceau in French and Garbe 
in German) and analytic bundles with their characteristic classes are 
the pillars on which the main result is built. 

The main result, which is not proved until the very end of the 
book, is the Riemann-Roch Theorem for nonsingular complex alge-
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braic varieties. The classical Riemann-Roch Theorem is concerned 
with the following problem: On a compact Riemann surface there is 
associated to each meromorphic function ƒ a divisor A(jf) = ]F) WiPi* 
which is a formal sum of points Pi with integer coefficients m* equal 
to the orders of ƒ at P,«; mi is positive if Pi is a zero and negative if Pi 
is a pole. In general, a divisor D=^ tijQj is a sum of points Qj in 
which only a finite number of the cofficients tij are nonzero. The sum 
deg CD) = 22 ni is called the degree of the divisor. A divisor is said 
to be ^ 0 if all tij^O. Divisors can be added and subtracted in an 
obvious way. Given a divisor £> = ]C tijQj, all meromorphic functions 
ƒ on the Riemann surface such that A(f)+D^0 form a complex 
vector space. (The condition means of course that ƒ has a zero of 
order ^ —nj a t a point Qj with tij<0 and a pole of order ^ +Uj a t a 
point Qj with tij>0 and is regular at all other points.) The classical 
Riemann-Roch Theorem says that the dimension of this vector space 
is 

(1) 1 + dim | D\ = deg (D) - g + i + 1, 

where g is the genus of the Riemann surface and i — 1 is equal to the 
dimension of the divisor K—D, K being the canonical divisor. If D 
is ample, e.g., if D consists of a sufficient number of points with non­
zero coefficients, then i = 0 and formula (1) gives precise information 
on dim | D \. 

The author took (correctly) the view that this is really a theorem 
identifying two radically different numbers. Let M be an algebraic 
variety of dimension n and W an analytic vector bundle over M, 
having as structural group the complex general linear group GL(q, C) 
in q variables. W will be called a line bundle if g = l. Denote by 
Q,{W) the sheaf of germs of holomorphic cross-sections of W and by 
H{(M, Q.(W)), 0Si^nt the ith cohomology group. The most im­
portant of these cohomology groups is H°(M, Q,(W))t which is by 
definition the vector space of all global holomorphic cross-sections of 
the bundle W and which therefore contains some of the most valuable 
information on W. I t is, however, the alternating sum 

(2) X(M, W) = E ( - 1 ) ' dim W(M, Ü(W))> 

which has notable properties. For a constant coefficient sheaf the 
sum (2) gives the classical Euler-Poincaré characteristic. 

The second number is related to the analytic structure in an en­
tirely different way. In fact, let d, l^i^n, be the Chern classes of 
the tangent bundle of M, and d,, 1 Sj^q, be the Chern classes of W. 
Introduce formally the quantities 7»-, l g i ^ w , and 8y, l^jliq, by 
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the relations 

i + E ^ - I I (1 + y<), 
1 + E * = I I (1 + 8y). 

Define 

(4) r(Jf, IF) = **["(««• + • • • + e8*) f l ——. ~], 
L *-i exp (-7,-) - U 

where the expression inside the brackets is symmetric in 7,- and dj 
and hence can be expressed as a power series in Ci and dj with rational 
coefficients, while the symbol K2n means the value of this cohomology 
class over the fundamental homology class of M. The Riemann-
Roch-Hirzebruch Theorem says that 

(5) x(M, W) = T(M, W). 

In particular, this implies that T(M, W) is an integer, which is by 
no means clear from the definition. If the bundle W is analytically 
a Cartesian product, both x(-^t W) and T(M, W) depend only on M 
and we will denote them by x{M) and T(M) respectively. x(M) is 
essentially the arithmetic genus of M and T(M) is the Todd genus. 
By some analytic manipulation one can see that (5) will follow from 
the particular case 

(6) x(M) = T(M). 

But the proof of (6) is not less difficult than that of (5). 
We mention in passing that (5) contains (1) as a particular case. 

In fact, a divisor on a Riemann surface defines a line bundle whose 
Chern class d\ has the property that #2(̂ 1) is equal to the degree d 
of the divisor. Formula (5) gives 

(7) dim E\M, 0(D)) - dim W(M, 0(D)) = d - g + 1, 

which is equivalent to (1) by Serre's duality theorem. 
Returning to the proof of (6) it is natural to observe that the ad­

vantages are obvious if 7,- are actually cohomology classes. This is 
the case when M is a split manifold, which means that the tangent 
bundle is analytically equivalent to a bundle with the triangular 
group as structural group, or, in other words, there is an analytic field 
of flags (i.e., a sequence of linear subspaces L1C.L2C • • • C.Ln in 
the tangent space) over M. An important example of a split manifold 
is the bundle B of all flags over M. If we take the polynomial 

(8) c(t) = 1 + Z ca* 
with the Chern classes of M as coefficients, then this bundle B has 
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the interesting property, reminiscent to the extension of an algebraic 
number field, that the inverse image of (8) in B decomposes into a 
product of linear factors. The author proves that x ( ^ ) = x ( ^ 0 > 
T{B) = T(M)> so that it suffices to prove (6) for a split manifold. 

The author's idea is to generalize %(My W), T(M, W) to involve a 
a parameter. In the simplest case when the bundle W is not involved, 
they are defined as follows: Let Q,p be the sheaf of germs of holo-
morphic ^-forms over M. Then we define 

(9) Xv(M) = E ( - 1 ) ' dim £T'(Af, 0*)y*. 

On the other hand, let 

z(y + 1) 
(10) Q(y; z) = y J + z 

exp (*(y + 1)) - 1 

and 

(11) TV{M) = KJJI Q{y;yA 
Lil ian J 

The introduction of the parameter y combines several known in­
variants. In fact, by definition, %o(M) = x ( ^ 0 - The Hodge theory of 
harmonic differential forms shows that x-i(M) is the ordinary Euler-
Poincaré characteristic of M and that Xi(-^f) is the index of M. The 
latter is defined to be zero if n is odd and to be equal to the number of 
positive eigenvalues minus the number of negative eigenvalues of the 
intersection matrix of (real) dimension n of M, if n is even. From the 
Gauss-Bonnet formula for compact Kâhler manifolds one can prove 
X-i(M) = r_i(j |f). But in order to prove Xv(M) = Ty{M) for all y, it is 
necessary and sufficient to prove their equality for a value of y^ — 1. 
The author's index theorem says that Xi(^0 = 2ni(Af), which there­
fore forms the bridge between the Xytheory and the TVtheory. 

The index theorem, which can be described as equating the index 
of a compact oriented manifold to a certain Pontryagin number, is a 
consequence of Thorn's algebra. Its origin can be traced to a result of 
Pontryagin, which says that the index of a bounding manifold (i.e., 
one which is the boundary of a manifold of one dimension higher) is 
zero. Thorn realized that in studying the characteristic numbers of 
compact manifolds it is important to introduce an equivalence rela­
tion,- by calling two manifolds equivalent, when their difference is a 
bounding manifold. Defining sum as union and product as the 
Cartesian product, such equivalence classes of manifolds are made 
into an algebra. Thorn proved that the tensor product of this algebra 
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with the field of rational numbers has as a multiplicative base the 
complex projective spaces of different dimensions. The index theorem 
follows from the Thorn theory by the simple observation that it is 
true for the complex projective spaces. 

The above is just a description of some of the important ideas 
which enter into the proof, with no attempt to give an outline. The 
use of the index theorem is effective, but probably unnatural. Even 
if a more direct proof of the Riemann-Roch Theorem is found, many 
of the ideas in this book should be found useful in other problems. 
The field certainly deserves further study. In fact, the two natural 
directions of extension are either algebraic varieties over finite fields 
and with singularities allowed or general complex manifolds. 

Because of the presence of the high-dimensional cohomology groups 
in (5) it may be felt that the theorem is probably less effective in 
applications than the classical case. For algebraic surfaces (n = 2) the 
theorem implies the classical Riemann-Roch inequality and is suffi­
cient for most purposes. (An exception is the theorem that if the 
plurigenera P4 and Pe are zero, then the surface is birationally 
equivalent to a ruled surface. For the proof of this theorem, the mere 
knowledge of the inequality is not sufficient; it is necessary to have 
some information about the superabundance of certain linear systems 
I D\, i.e., precisely about the value of dim H}(M, Q(J9)).) 

The book uses many of the deep results in different branches of 
mathematics, and may cause difficulty even to readers with a good 
background. One should realize, however, that this is essentially an 
original paper. For such the introductory material is ample; it is 
also well written. If the reader succeeds in reaching the summit, the 
panorama is highly recommendable. 

S. S. CHERN 


