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To E. L. Post 

The theory of special functions is known as a "painful" subject. 
My talk today might as well be entitled, "special functions without 
pain." The painful nature of the subject springs from this: that a t 
first sight, it seems to consist of an enormous number of uncorrected 
individual cases, the particular significance, connection, or depth of 
any specific formula being hard to judge—an enormous mass of 
chaotic detail, the worst sort of material with which to deal. What is 
needed, then, is some way of ordering and correlating the material, 
which should, in order of importance, accomplish the following ends. 

(1) To make evident in a general intuitive way what sorts of 
formulae are likely to hold "on standard grounds" and, conversely, 
which formulae depend on really special or on deeper properties of 
a given special function. 

(2) To give in a mechanical way the exact form of as wide a class of 
formulae as possible. 

(3) To furnish exact proofs of these formulae. 
In attempting to develop such a scheme, it is clear that the ques

tion of notation will play a role of importance. In contrast to the con
ventionally meaningless ad hoc notations for the various kinds of 
special functions, one wants to develop a "natural" notation, which 
will bring out as much of the structure of a given function as possible. 
What I would like to do today is to indicate how one such system 
can be developed, to indicate the derivation of a few formulae on the 
basis of this system, and to describe in a general way the range of 
applicability of the methods involved. 

The complete system would consist of three parts: 
(a) the function theoretic method (Riemann's method) ; 
(b) the Laplace transform method ; 
(c) the method of partial differential equations. 
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Today I shall discuss only the first of these, since the latter two 
are more standard. However, I should remark that 

(a) covers transformation, recursion, differentiation, multiplica
tion, and a number of expansion formulae, and provides a general 
framework into which (b) and (c) fit. 

(b) covers most integral formulae, if used in a sufficiently system
atic way. For an excellent introduction to the application of the La
place transform method, the recent book of van der Pol and Bremmer 
may be consulted. 

(c) covers a class of addition and expansion formulae. For a most 
interesting treatment of this method, the papers of P. Henrici listed 
in the bibliography appended to the present paper should be con
sulted. 

Together, (a), (b), and (c), if used systematically, can cover over 
80% at least of the body of formulae constituting the standard corpus 
of "special function theory," leaving a residue of 20% or so which 
count from the point of view of (a), (b), and (c) as special formulae. 

The basic idea of the method (a) is taken from Riemann's famous 
paper of 1857 on the hypergeometric function, and is simply this— 
to characterize a differential equation with rational coefficients not 
in terms of the parameters entering into its coefficients, but in terms 
of its singularities, and in terms of parameters describing the nature 
of its solutions in the neighborhood of these singularities. We shall 
consequently consider an ordinary homogeneous linear differential 
equation of order n 

(1) (£ƒ)(*) = ƒ(»>(*) + rn.x{z)j^\z) + . . . + r0(s)/(s) - 0, 

the coefficients 77 being rational functions. A "special function" will 
be a solution of such an equation. This definition includes all the 
"special functions of mathematical physics"—hypergeometric, Whit-
taker, Bessel, Lame, Mathieu, ellipsoidal wave, etc., functions, but 
excludes abelian integrals (though not strictly), 64unctions, the 
gamma function, etc. 

The singularities of equation (1) are s = <*> and the singularities of 
its coefficients. As is customary, we distinguish the singularities into 
regular and irregular singularities, and the irregular singularities into 
irregular singularities of various types. This may be done in the con
ventional way by examining the orders of the poles of the coefficients 
rj a t the various singularities. More significantly for the present pur
pose, it may be done by considering the behavior of the solutions of 
(1) a t a singularity f. For simplicity, take f = 0. Then it is known 
that in general (1) possesses linearly independent solutions 
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0*1, • • * , <r» 

which are asymptotically of the form 

<n(z) ~ exp (qi,hjrhi,9i + • • • + qi,ifi-ll9i)*ai(l + P<.&lhi 

+ Pi.**'"+--), 
in the neighborhood of 2 = 0, *>»• being a certain integer. The series 
here are not convergent but only asymptotic, and that only in certain 
angular sectors of the plane. Moreover, these series may in particular 
cases contain logarithmic terms also. However, for simplicity in the 
present presentation, I will ignore these possibilities. 

As a convenient symbolic representation of the asymptotic series 
(2), let us write 

(3) [vi\ qi,kit • - • , Qi.u «*; pi,i, • • • , pi,Ni] 

to as many terms as is profitable, calling Ni the number of times the 
symbol (3) is augmented. We normally assume that qi,k{ is not zero; 
that is, if g»,j = 0 for l<£p + l, we normally begin the symbol (3) with 
W<7;,2» * ' ' ]• If ^*==:1» it will normally be omitted from the symbol 
(3). Finally, we agree to write [a] as a. Then if the asymptotic forms 
of the solutions of equation (1), Z / = 0 , a t the singularity f = 0 are 
represented by the symbols (3), the type r(f) of the singularity J* is 
given by the simple formula 

(4) r(f) = smallest integer not less than max (ki/vt) + 1. 
« = l . . . n 

If 7"(f) ==1> the singularity is regular; otherwise it is irregular. 
The quantity R defined by the sum R= X) r(?) extended over all 

the finite and infinite singularities of the equation (1) may be called 
the Riemann number of equation (1). The Riemann number R meas
ures the total number of singularities of equation (1), counted accord
ing to type. If we count the total number P = P(R, n) of parameters 
on which an equation of Riemann number R and order n depends, 
we easily find 

n(n + 1) 
(5) P(R, ») - (ie - 2) 2 + n. 

The symbol (3) has been introduced as a description of the asymp
totic form of a given solution of equation (1) at one of its singularities 
f. The singularity f itself may now be described by the collection of 
symbols (3) describing the n asymptotic forms of n linearly inde
pendent solutions a f, that is, by the collection of symbols 
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f 
[̂ 1 I ?l,*n ' ' ' » Û1Î #1.1» • ' " i #l,iV\], 

[̂ 2 I (?2,fc2, * ' ' , «2Î #2,1» " • • » #2,iV2], 

( 6 ) , 

["n I Qn,kn, ' ' * , an] pn,U ' ' ' » #n, iV nJ . 

The quantities au • • • , an are called the exponents of the singularity 
f. If (6) describes a single singularity of equation (1), and if fi, • • •, Çp 

is the collection of all singularities of equation (1), it is natural to 
describe equation (1) itself by the conglomerate symbol 

f l f 2 • • • f J» 

["i I îi.*i, • • • » «il #1,1» • • • #i,tfj [MI I Qi.iv ' • * ] [*i I • ' * ] 

[v21 g2,*2, • • • p2,N2] [/*21 • • • ] [X21 • - • ] 

; z 

I W | qn,kn, • • • Pn,Nn] [/*n | ' • ' ] [Xn | ' * ' ] J 

(7) * 

composed of the symbolic descriptions of all its singularities. The 
symbol (7) may be called the Riemann symbol of equation (1). I have 
followed Riemann in writing it as a symbolic function of 0, which 
may, according to the requirements of convenience, denote either the 
equation (1) itself, or an arbitrary branch of the multi-valued func
tion which is its solution. The parameters entering into the general
ized Riemann symbol (7) are not all independent; the exponents are 
bound together by the generalized Fuchs relation, which may be 
stated in case equation (1) has regular singularities only in the form 

_ n(n — 1) 
(8) Z«.= 2 (*-2) , 

the sum in (8) being extended over all singularities and all exponents. 
Relation (8) holds even in the presence of irregular singularities in 
suitable "nondegenerate" cases. In the presence of "degeneracies," 
formula (8) must be appropriately modified. 

By augmenting the entries in the Riemann symbol (7) a sufficient 
number of times, we may ensure that the symbol (7) contains at 
least as many independent parameters as the number (5) of param
eters entering into the coefficients of equation (1). In this case, it is 
reasonable to surmise that the symbol (7) determines the correspond
ing equation (1) uniquely. It is in fact easy to state general conditions 
under which the symbolic description (7) determines the correspond
ing equation uniquely. Without stating these conditions explicitly, 
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I shall write only such symbols (7) as do determine a unique differen
tial equation. To find the symbolic representation of a given equation 
(1), we have only to substitute trial solutions of the form (2) into 
equation (1), and to compare the coefficients of the lowest few powers 
of z on the left and right of (1). This will yield the symbolic descrip
tion of (1) after a small amount of algebraic computation. 

Thus, for example, the hypergeometric equation 

6(6 +a- l)f(z) - z(6 + 7l)(6 + y%)f(z) = 0, 6 = zd/dz, 

is associated with Riemann's symbol 

0 1 

0 0 

1 — a a 

3> 

zd/dz, 

7i Î * 

7i — 72 72 

the confluent hypergeometric equation 

6(6 +a- l)f(z) - z(6 + y)f(z) = 0, 

with the symbol 

f 0 00 

$ 0 7 ; 

{ 1 — a [l, a — 7] 

More generally, the generalized hypergeometric equation 

6(6 + ax - 1) • • • (6 + aq - l)f(z) - z(6 + 71) • • • (6 + yp)f(z) = 0, 

6 — zd/dz, 

is associated if p ^ q with the symbol 

0 00 

0 71 

1 — CL\ 

7p * 2» 

[e I eoji, ƒ ] 

(9) 

$ 

I 1 - OLq I e\ eœ( j] 

where e=q+l— p; coi, • • • , cae are the £th roots of unity, and 
f=e~1((q+p)/2 — ^2Ui a»—]C?-i 7*)- I*1 order to write a Riemann 
symbol characterizing the Fuchsian case p = q+l of equation (9), it 
is convenient to introduce an auxiliary notational convention. I t is 
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known that if a group of several of the exponents at a regular singu
larity of equation (1) differ by an integer, the corresponding solutions 
may possibly contain logarithmic terms. If in a particular case such 
terms may apparently but do not in actuality appear, we indicate 
this by bracketing the corresponding entries in the associated Rie-
mann symbol together on the left by a single curly bracket. In terms 
of this notational convention, the Fuchsian case p = q+l of equation 
(9) is determined by the Riemann symbol 

$ 

0 

0 

1 — ax 

0 

1 

Iff — 1 

7 I 

7p 

As a final example, illustrating the employment of an augmented 
Riemann symbol, let me mention that the equation 

(1 - *»)ƒ"(*) ~ 2s/'(a) + (X + 40(1 - *») - M2(1 - s1)-1)/^) 

of spheroidal wave functions corresponds to the symbol 

$ 

0 

+1 
[M/2;*] 

- M / 2 

- 1 
M/2 

- M / 2 

0 0 

[201'2, 1] 

[-201'2, 1] 

where 

k = k(\ 0, ix) 

is an easily computed algebraic function. This symbol might also be 
written as 

[ + 1 - 1 oo 

* [ M / 2 ; * ] [/*/2;*-*«l+"/»*] [26^,1] ; z 

{ - M / 2 - M / 2 [ - 2 0 ^ , 1 ] . 

indicating explicitly how the fact that the spheroidal wave equation is 
even is reflected in the corresponding symbol. 

As a first example illustrating the use of the Riemann symbols (7) 
in the derivation of identities among special functions, let me note 
that since e^—e"', since ( — z)ff is a constant multiple of z0, and since 
e~"* is regular and nonvanishing in the finite plane, we have 
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(10) 

= $ 

' 0 

0 

00 

7 ; 

. 1 — a [—1, a — 7] 

= e-*$ 

0 00 

0 a - 7 ; 

A-a [1 ,7] 

z 

0 

0 00 

$> | 0 7 ; —2 

— a [l, a - 7] 

f 0 00 

= r* f$ 0 [l, 7] ; 

I 1 — a a — 7 

Note that the Riemann symbol at the end of equation (10) is of the 
same general form as that which begins equation (10). If we write 
equation (10) in the more conventional notation of Pochammer for 
confluent hypergeometric functions, we see that we have established 
Rummer's transformation 

IFI(Y; a\ —z) = (T\Fi{a — 7; a\ z). 

I t is easy to see, making use of the Riemann symbol for the general
ized hypergeometric equation (9) in case p^g, that this is the only 
formula of its sort which applies to the solutions of equation (9) in 
case p^q. A more fanciful change of variable, which applies to the 
solutions of equation (9) if £ = 3, g = 2, and which may be justified 
in the same way as (10), is 

$ 

0 

0 

1 - a 

1 00 

0 71 

.1 72 

1 - J 8 1/2 73 

= $ 

= $ 

= d 

; - 4 z ( l -

• 0 

0 

1 - a 

• 1 - | 8 

' 0 

0 

1 - a 

- s)2^$ 

' 

-z)~2 

00 1 - 1 

0 2 T l 

1 — a 272 

1 - / 3 273 

0 

1 ' 

. 2 

1 00 

271 0 

272 1 — a 

273 1 - / 3 

' 0 1 

0 0 

1 — a 2(72 — 71) 

. 1 - / 3 2(73 - 1 ri) 

Z 

1 

1 

00 

271 

— a + 271 

- j9 + 271 



538 J. SCHWARTZ [November 

In case 72=7i + l /2 , the last Riemann symbol in this equation evi
dently denotes a solution of (9) with £ = 3, q = 2, and we have evi
dently derived Whipple's transformation 

»Fi(Ti, 7i + 1/2, 73Î a, |8; - 4 s ( l - z)~2) 

= (1 - 2)^3^2(271, 27i + 1 - a, 271 + 1 - 0; a, j8; 2). 

Let us now consider the process of multiplying two functions. For 
this purpose, first note that the differential equation with single-
valued coefficients of lowest order satisfied by a given multi-valued 
function is the smallest number of its branches on which all its 
branches are linearly dependent. Suppose then that we take two 
multi-valued functions a and p, each satisfying a second order differ
ential equation with single-valued coefficients. Then there exist two 
branches 0*1, a2 of a on which all the continuations of a are linearly 
dependent, and two branches pi, p2 of p on which all the branches of 
p are linearly dependent. I t is then apparent that all the branches of 
the product ap are dependent on the four branches 

0"l,Pl, ör2P2, <TiP2, 0*2Pl-

This observation justifies the following calculation. 

$ 

0 00 

0 7 

I 1 — a [ 1 , ( 2 - 7 ] 

0 00 

$ I 0 7 ; z 

{ 1 - a [ 1 , 0 5 - 7 ] 

0 00 

[0;0] 2 7 

= $ | 2 - 2a 2(a - 7); z 

1 - a [l, a] 

{ 2 — a [""If <*] 

0 00 

0 7 

= <ï> I 1 — a a — 7 ; z2/4 

1/2 -a/2 [2 I 2, a/2] 

1 1 - a/2 [2 I - 2 , a/2] 

In more conventional notation, this is the following formula of 
Ramanujan 

(11) 1F1(a; 7; s)ift(a; 7Î - * ) - 2^(7, a - y; a, a/2, a/2 + 1/2; s2/4). 
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An amusing example of the sort of formula of this type sometimes 
to be met is the following formula of Bailey. 

0^2(pi, P2Î Z)QF2(PI, P2Î —Z) = 3^8 

1 1 1 
. = [-r(pi + P2 — 1), — ( p i + P 2 ) , — - ( P I + P2 + 1) ; 

1 1 1 1 
— Pi, P2, — Pi, — P2, — (Pi + 1), — (P2 + 1), 

1 1 / 3 \ . 
— (PI + P2 - 1), j (PI + p2) ; (-jj

 3 * 2 ] . 

The derivation of (12) by Riemann's method is just as trivial as the 
derivation of (11). 

As a final example, we calculate the Laplace transform of the 
square of a Bessel function, so as to illustrate the way in which the 
function theoretic method links up with the method of the Laplace 
transform. Rather than giving the explicit statement of the various 
general rules governing the Laplace transform of a Riemann symbol, 
we will display the various steps of the calculation, which will make 
the principles involved reasonably clear. If <£ƒ denotes the Laplace 
transform of/, we have 

ƒ 
•/ 0 

(13) 

e-*l(Jv(t))Ht = £ 

= £ 

= $ 

= $ 

== $ 

$ 

' 0 

V 

I ~ v 
r 

3> 

0 

[0;0] 

2v 

> -2v 
' 2% -2i 

0 0 

. 0 0 
' 0 - 4 

0 0 

. 0 0 

k 

1 + 1 

0 0 

D 0 

0 0 \2 \ 

[i, 1/2] ; • 1 1 
[-*, 1/2] ) ] 

co 1 1 

1 

[2i,U : 

[-2*. 2] J ] 
0 » 

[0;0] 1 - 2v ; 

0 1 + 2v 
0 0 

1/2 - v ; s2 

l /2 + i» 
00 

s2 

1 / 2 - * ; -
1/2 + 1-

+ 2 
2 

(s) 

(s) 
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Here we have used most notably the fact that the Laplace transform 
of a function satisfying a differential equation with (even) rational 
coefficients satisfies a differential equation with even rational coeffi
cients. By noting the asymptotic form of the Laplace integral in (13) 
as s—>oo we may determine the particular branch of 

$ 

f - 1 + 1 oo 
s2+2 

0 0 1/2 - F ; 
2 

0 0 1/2 + *> 
represented by this integral. In this way we find that the integral in 
(13) represents the Legendre function of the second kind, and that 
(13) may be written in more conventional notation as 

/

l /s2 + 2\ 

^ e~°VM2dt =-QP-i,2{——y 
This is a special case of a formula of Hankel. 
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