
INTEGRALS AND SUMMABLE TRIGONOMETRIC SERIES 

R. D. JAMES 

I should like to begin by expressing my thanks to Professor Zyg-
mund, who not only interested me in the subject of trigonometric 
series but also suggested the possibility of defining generalized 
integrals which would have applications to summable trigonometric 
series, and then supplied helpful hints from time to time. 

1. Introduction. One of the problems in the theory of trigonometric 
series 

1 00 00 

(1.1) — ao + X) (a*> cos nx + bn sin nx) = ]T) an(x) 

is that of suitably defining a trigonometric integral with the property 
that, if the series (1.1) converges everywhere to a function ƒ(x), then 
f(x) is necessarily integrable and the coefficients, an and bn, given in 
the usual Fourier form. It is well known that a series may converge 
everywhere to a function which is not Lebesgue summable nor even 
Denjoy integrable (completely totalisable, [3]). A simple example is 
that given by Fatou in which an = 0, w^O, and &n = l/log (n + l), 

More generally, if {bn} is any monotone decreasing sequence with 
limit zero such that the series Ylfin/n diverges, then the sum of the 
everywhere convergent series ^2bn sin nx is not completely totalisable 
[S, pp. 42-44]. 

The problem has been solved by Denjoy [4; 5], Verblunsky [14], 
Marcinkiewicz and Zygmund [lO], Burkill [l; 2], and James [8]. 
In Verblunsky's paper and Burkill's first paper, additional hypotheses 
other than the convergence of (1.1) are made, and in all the papers 
a change in the form of the Fourier formulas is required. The solu­
tions are described, mainly in the order in which they were published, 
in §§2-7 below. 

An extension of this problem is to consider series which are not 
necessarily convergent, but are summable (C,k),k*zl (Cesàro means 
of order k, [6, Chaps. V and VII]). Here the situation becomes more 
complicated since even though a series is summable to a Lebesgue 
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summable function, the coefficients may not be given by the usual 
formulas. In particular, there are series such as ^n sin nx which is 
summable (C, 2) to zero for all x, whereas the coefficients are not 
zero. It is difficult to conceive of a process of integration which would 
integrate an identically zero function and yield anything but zero. 
Wolf [15] has solved the problem for series summable (C, k) to a 
Denjoy integrable function and his results show that there may be a 
reducible set of exceptional values of x and that these exceptional 
values enter into the formulas for the coefficients. Since Wolf was 
not concerned with the question of a trigonometric integral, his 
work will not be discussed in this paper. 

There is another difference between convergent and summable 
trigonometric series which makes the latter more difficult to deal 
with. The formal product ([6, Chap. X], [16], [17, Chap. XI]) of 
the series (1.1) and, for example, sin mx is the trigonometric series 
obtained by muliplying (1.1) by sin mx and replacing the products 
cos nx sin mx, sin nx sin mx by sums of cosines and sines. It is easy 
to see that, if the series (1.1) converges to ƒ(#), then the formal 
product of (1.1) and sin mx converges to f(x) sin mx. This statement 
is not true in general for summable trigonometric series. A simple 
example due to Rajchman [16, p. 78] is the series X) s^n nx* which 
is summable (C, 1) to 2~x cot (x/2) for x^O, and to zero for x~0. 
The formal product of this series and sin x is, however, (1 +cos x)/2, 
which is equal to 1 when x = 0. Thus it is possible that a process of 
integration designed for series summable (C, 1) would integrate ƒ(x) 
but not f(x) sin x, and the usual Fourier formulas could not be valid. 

The problem of suitably defining a trigonometric integral which 
may be applied to trigonometric series summable (C, k) can be solved 
if an additional condition involving the series 

00 00 

(1.2) ^ (an sin nx — bn cos nx) = — X) K(%), 
n = l w = l 

conjugate to (1.1), is imposed. The condition is that the series 
]C{&"(#)— bn+i(x)} be summable (C, k) to fa(x) or, equivalently, 
that bn(x)—>0, (C, k). In the case of convergent series (&=0), this 
condition is automatically satisfied. With this extra condition, it 
can be shown that the generalized PA+2-integral [9] integrates trigo­
nometric series summable (C, k) and that the coefficients are given 
by a suitable modification of the Fourier formulas. A description of 
the method, which has not yet been published, is given in §8 below. 

2. Totalisation of generalized second derivatives. The process of 
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totalisation introduced by Denjoy goes back to 1912 and the exten­
sion to the problem of calculating a second primitive (totalisation 
symétrique à deux degrés) was outlined by him in a series of notes 
in 1921 [4]. The publication of a detailed account was begun in 1941 
and, delayed by the war, completed in 1949 [5], 

The application to trigonometric series is based on a fundamental 
result due to Riemann. Let 02(x, h) =02(i?; x, h) be defined by 

(2.1) — «,(*, h) = — {F(x + h)+F(x- h)} - F(x). 

If the limit of 02(#, h) as h—»0 exists it is called the generalized (sym­
metric) second derivative of F(x) and written D2F(x). Riemann 
proved that, if the series (1.1) converges for all x to a function ƒ(x), 
then the series 

(2.2) ! * * - £ * « 
2 2! nti n* 

(obtained by integrating (1.1) formally term-by-term twice) con­
verges uniformly to a continuous function F(x) such that D2F(x) 
=f(x). This suggests the problem of defining a process of integra­
tion, which, starting with the generalized second derivative of a 
continuous function, yields the function itself. 

Denjoy extended the problem to include the case where the gen­
eralized second derivative may not exist for all x and considered 
generalized second dérivâtes. The lim sup and lim inf of 02(x, h) as 
h-*0 are called, respectively, the upper and lower (extreme) general­
ized second dérivâtes and denoted by A2F(x), 82F(x). It may happen 
that 02(#, hn) tends to other limits for suitably chosen sequences {hn} 
tending to zero. Such limits are called median generalized second 
dérivâtes. The problem he set is that of finding a process of totalisa­
tion for a function ƒ(x), knowing only that it is one of the generalized 
second dérivâtes (extreme or median) of a continuous function with 
finite extreme generalized second dérivâtes at each point of an inter­
val (a, b). The process should determine the second primitive F(x) 
up to an arbitrary linear function, or, equivalently, determine the 
second variation of F(x) defined by 

(2.3) V(F; a, ft 7) = (7 - ?M*) + (« - yW) + 08 - *F(v) 

for any three points, a, ft 7, of (a, b). 
The starting point of the attack on the problem is the following 

result [5, §52b, 2, pp. 219-220]: 
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Suppose that the maximum of |02(x, h)\ for all h is a finite number 
A(x) for x belonging to a perfect set P contained in (a, b). Then, either 
A(x) is bounded by a number A(P) independent of x€ ïP , or the set E 
of points of P in the neighborhood of which A (x) is not bounded is non-
dense in P. 

Since A2F(x) and ö2F(x) are supposed finite in (a, b) the maximum 
of 62(x, h) is also finite, and the hypothesis above is satisfied with 
P = (a, 6). In every closed sub-interval of (a, b) having no point 
in common with E, A(x) is bounded and hence/(x), being one of the 
generalized second derivatives, is also bounded in this sub-interval. 
I t follows that the set Si = Si((a, &), ƒ) of points of (a, b) in the neigh­
borhood of which ƒ (x) is not Lebesgue summable is nondense in (a, b). 
Thus if ce, ft 7 are any three points in the same interval contiguous 
to Si, the second variation of F(x) is given by 

V(F; a, ft 7) = ƒ (fiy + ax)f(x)dx 

(2.4) fi 

+ I (yet + fix)f(x)dx + I (o0 + yx)f(x)dx, 
J y J a 

where the integrals are taken in the Lebesgue sense. 
Den joy defines what he calls problem (U) relative to a set E in 

(a, b) as that of calculating V(F\ a, /3, 7) for any three points ay ft 7, 
of £ . Problem (U) contiguous to a set E is said to be solved if problem 
(U) relative to each interval contiguous or semi-contiguous to E has 
been solved. Using this terminology, what has just been shown is that 
problem (U) is solved (by Lebesgue integrals) contiguous to the set 
Si. (This Lebesgue integration is named operation 1 by Den joy [5, 
p. 277].) 

Two further operations (2 and 3) lead from the solution of prob­
lem (U) contiguous to Si to the solution of problem (U) contiguous 
to Si , the first derivative of Si. The two operations involve the taking 
of limits. In general, if fx is an ordinal number of the first kind and 
problem (U) contiguous to SiM_1), the derivative of order /x— 1 of Si, 
has been solved, a finite number of applications of operation 3 leads 
to the solution contiguous to SiM). If /x is of the second kind and prob­
lem (U) contiguous to Si° has been solved for every v <ju, then it is 
also solved contiguous to S{^\ Eventually, after a t most a countable 
number of applications of operations 2 and 3, the solution is found 
contiguous to Pi , the maximal perfect set contained in Si. The set 
P i is called by Denjoy [5, p. 91], the perfect nucleus of Si. The con­
clusion now is that problem (U) contiguous to P i is solved. 
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Unlike the problem of simple (or complete) totalisation [5, §76b, 
2, p. 337], it is not known a priori that P i contains a closed set S2, 
nondense in Pi , such tha t problem (U) contiguous to S2 may be 
solved. Hence another method must be found. 

I t may happen that P i is one of three special types of perfect sets 
[5, §39, pp. 121-126], and that A(x) is bounded on Px . In this case, 
Denjoy shows, using possibly six more operations (4, 5, 6, 7, 8, 9), 
that problem (U) relative to (a, b) can be solved. This involves in­
tricate analysis and a great deal of detailed calculation. The opera­
tions themselves consist of a Lebesgue integration of ƒ(x) and xf(x) 
over a perfect discontinuous set where ƒ(x) is summable, completed 
by the summation of an absolutely convergent series and the taking 
of various limits. There is a recapitulation of the role played by each 
of the nine operations in [5, §73e, pp. 317-318]. 

If P i is not one of the three special types, or if A (x) is not bounded 
on Pi , it becomes necessary to construct a closed set 5 2 C P i which is 
nondense in P x and such that problem (U) contiguous to 5 2 may be 
solved [5, §74, pp. 318-325]. Then the above argument can be re­
peated with 5 2 in place of Si. 

In this way a sequence {S», PM} of pairs of sets is constructed with 
Su closed and PM the perfect nucleus of 5M. If a t any stage PM is one of 
the three special types and A (x) is bounded on PM, problem (U) rela­
tive to (a, b) is solved. Otherwise, the sequence S» of closed sets, each 
containing the next (equality excluded) must terminate so that all 
the sets 5M beyond a certain Sv are empty. Then problem (U) rela­
tive to (a, 6) is again solved. 

The calculation of the coefficients of a trigonometric series which 
converges for all x to a finite function ƒ(x) is now an easy matter. The 
second variation of the function F(x) obtained by totalisation from 
f{x) is the second variation of the series (2.2)*. This, for the particular 
points — 27T, 0, 27T gives 

(2.5) 47r3ao= V(F, - 2TT, 0, 2TT). 

The formal products of (1.1) and cos mx and of (1.1) and sin mx 
converge for all x to f(x) cos mx and f(x) sin mx, respectively. The 
constant terms in the new series are am/2 and bm/2, respectively. 
Hence, if Gm(x) and Hm(x) denote the functions obtained by totalisa­
tion from f(x) cos mx and f(x) sin mx, respectively, then 

47r3aw = V(Gm, -IT, 0, 2TT), 

4w*bm - V(Hm, - 2 T T , 0 , 2TT). 

Thus the problem for a convergent trigonometric series is com-
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pletely solved. The solution may seem unnecessarily complicated 
and Denjoy himself remarks [5, p. 325] "Certains de mes lecteurs me 
feront peut-être grief de la minutie des calculs développés dans les 
cinquantes pages de ce Chapitre (X)." It must be pointed out, how­
ever, tha t he gives examples [5, §114, pp. 585-593], of trigonometric 
series which converge for all x and for which the last five operations 
are required. In addition he shows that it is impossible that the se­
quence {SM, PM} of pairs of sets be such that there is a unique ju0 

beyond which all the sets 5M are empty for every convergent trigo­
nometric series. 

3. Approximate totalisation. Instead of using the series (2.2) Ver-
blunsky [14] considered the series found by a single formal integra­
tion term-by-term of (1.1). In addition he restricted his attention to 
the complex power series 

00 

(3.1) £ *»«'*•, 

oo 

(3.2) Z) <?»«***/*». 

where cw = an —ibn* I t is still true, however, that a process more 
powerful than totalisation is needed. There are series of the form (3.1) 
convergent for all x, such that (3.2) is not uniformly convergent [ l l ], 
whereas the indefinite Denjoy integral is necessarily continuous. 

Denjoy defines a class of functions which he calls résoluble (cf. 
[13, Chapter VII , particularly §9]). A function of this class has an 
approximate derivative almost everywhere which is (simply) total-
isable. Verblunsky widens the class to approximately resoluble func­
tions which still have an approximate derivative almost everywhere. 
An approximately resoluble function in (a, b) is one that is a differ­
ential coefficient and such that every perfect set in (<z, b) contains a 
portion on which the function is resoluble. 

One of the conditions imposed on a function f(x) in the process 
of totalisation is that the set of points of (a, b) in the neighbourhood 
of which ƒ(x) is not Lebesgue summable is nondense in (a, b). Ver­
blunsky replaces "not Lebesgue summable" by "not totalisable." 
I t is then possible to define approximate totalisation, a process which 
integrates the approximate derivative of any approximately re­
soluble function. 

Verblunsky's result is as follows [14, Theorem V ] : 
If the partial sums of the series (3.1) are bounded for all x except 

possibly those belonging to a countable sett and if the series (3.2) con-
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verges for all x to G(x) — iH(x), then the approximate derivatives Ga(x), 
Ha(x) exist almost everywhere and 

(3.3) iram = I Ga(x) cos tnxdx = —• I Ha(x) sin mxdxf 

(3.4) wbm = I Ga(x) sin tnxdx = I Ha(x) cos tnxdx, 

where the integrals are taken in the approximately totalisable sense, If, 
in addition, the series (3.1) is Abel (or Poisson) summable to g(x) —ih(x) 
almost everywhere, then Ga(x)=g(x), Ha(x)=h(x) almost everywhere 
and am, bm are given by the usual Fourier formulas. 

4. The integral of Marcinkiewicz and Zygmund. One method of 
defining a process of integration is through the use of majorants 
and minorants. If f(x) is defined in an interval (a, b), a majorant of 
f(x) in the ordinary Perron sense is a function M(x) satisfying the 
conditions 

(4.1) M(x) is continuous in (a, b), 

(4.2) A f ( a ) = 0 , 

(4.3) D*M(x) à f(x), almost everywhere in (a, b), 

(4.4) D*M(x) T ^ — O O , except possibly at a countable set in (a, b). 

In this definition D*M(x) denotes the (ordinary) lower derivate of 
M(x). A minorant m(x) is similarly defined with D*m(x) ^f(x) and 
D*m(x)?*to replacing (4.3) and (4.4), respectively. Let J(b) denote 
the inf of the numbers M(b) for all majorants and jib) the sup of the 
numbers m(b) for all minorants. If J(b) —j{b), the common value is 
the Perron integral of ƒ(#) over (a, 6). 

Since the Perron integral and totalisation (complete) are equiva­
lent, it is clear tha t some extension of the classes of majorants and 
minorants is needed for applications to trigonometric series. Marcin­
kiewicz and Zygmund [10] altered condition (4.1) to the require­
ment tha t Mix) be continuous in mean, tha t is, Mix) is Perron 
integrable and 

1 rh 

(4.5) lim — I Mix + t)dt = M(x), 
/»-K> k J o 

for all x £ P , where PG(a, b), a £ P , 6 £ P , and (a, b) —P is of meas­
ure zero. They also replaced the ordinary lower dérivâtes in (4.3) 
and (4.4) by the lower Borel symmetric derivate, BD*M(x) defined 
as the lim inf as h—>0 of 
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1 r»M(x + t)-M(x-() 
(4.6) — I dU 

hJo 2/ 
Similar changes were made in the definition of a minorant. If J(b) 
=./(&), the common value F(b) is the MZ-integral of ƒ(#) with respect 
to P over (a, b) and may be written 

F(b) = (a f b\f(x)dx. 

One of the properties of the integral is that, for aÇzP, jSG-P, 

F(j8) - F ( a ) = (af p\f(x)dx. 

The integral is not defined for all a, /3, but only for almost all a} /3, 
in (a, b). This, surprisingly enough, is an advantage, rather than a 
disadvantage for applications to trigonometric series. The reason is 
as follows. If the series (1.1) converges to ƒ(x) for all x, the series 

1 * bn(x) 
(4.7) ^ - E - l l 

2 n-l » 

(obtained from (1.1) by integrating formally term-by-term) con­
verges almost everywhere to a function G(x) which is continuous in 
mean. If F(x) denotes the sum of the series (2.2), the fundamental 
result of Riemann (§2) shows that D2F(x)=f(x). But, it is not 
difficult to show tha t whenever D2F(x) exists, so do BD*G(x) and 
BD*G(x) and tha t each is equal to D2F(x) =ƒ(#). Hence, if P denotes 
the set of points where G(x) exists and is continuous in mean, and 
if aÇ.P, then G(x) — G(a) is both a (Borel) majorant and a minorant 
of ƒ(#). I t follows that 

(4.8) G(a + IT) - G(a) = ( a f a + 2v\f(x)dx. 

But, from (4.7), the left side of (4.8) is equal to 7ra0, which gives the 
first of the Fourier formulas. The others are found by the process of 
formal multiplication explained a t the end of §2. 

5. The Cesàro-Perron integral. Burkill defined a process of integra­
tion which is similar to that of Marcinkiewicz and Zygmund. He 
altered (4.1) in the same way although he used the term Cesàro- or 
C-continuous instead of continuous in mean. He replaced the 
ordinary lower derivate in (4.3) and (4.4) by the lower Cesàro-
derivate, CD*M(x)t defined as the lim inf as ft—»0 of 
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(5.1) — f {M(x + t) -M(x)}dl 
h2Jo 

Similar changes were made in defining a minorant. If J(b) =j(6), the 
common value F(b) is the Cesàro-Perron or CP-integral of f(x) over 
(a, b), and may be written 

F(b) = (CP) f f(x)dx. 

This integral also applies to the problem considered by Verblunsky 
(§3). It turns out [l] that the first two conditions imposed by 
Verblunsky imply (in the notation of §3) that G(x) and H(x) have 
finite upper and lower Cesàro dérivâtes in (a, b) with the possible 
exception of a countable set. From this it follows that the upper 
and lower Cesàro dérivâtes are equal almost everywhere, and, de­
noting the common values by CDG(x), CDH(x), that each of CDG(X)t 

CDH(x) is CP-integrable over (a, b). Moreover, the coefficients 
ami bm are given by (3.3) and (3.4), respectively, with Ga(x), Ha(x) 
replaced by CDG(x), CDH(x), respectively, and the integrals by 
CP-integrals. 

Burkill [l] also shows that the third condition of Verblunsky that 
the series (3.1) is Abel summable almost everywhere is redundant, 
being implied by the other two. 

6. The Perron second integral. James and Gage [7] defined a 
Perron second (or P2-integral) which, like Denjoy's totalisation of a 
generalized second derivate, starts with a function f(x) and goes di­
rectly to a second primitive F(x) such that D2F(x) =ƒ(#) almost 
everywhere. 

They made no change in condition (4.1) but required M(x) to 
vanish at both ends of the interval (a, b). They also replaced the 
ordinary lower derivate in (4.3) and (4.4) by the lower generalized 
second derivate b2M(x). In addition the condition of smoothness, 

(6.1) h$2(x, h) -> 0 as h -+ 0, 

was required to hold for all x in the countable set of exceptional points 
of (4.4). If c is any point of (a, 6), let —J(c) denote the inf of the 
numbers —M(c) for all majorants and —j(c) the sup of the numbers 
— m(c) for all minorants. If —J(c) = — j(c), the common value —F(c) 
is the P2-integral oîf(x) over (a, b; c) and may be written 

-He) = f f(x)d2x. 
J (a.b) 
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The reason for using negative signs is that M{x) — m{x) is convex in 
(a, b) and this makes — M(x) à —m(x). 

In a second paper, James [8] showed that the PMntegral provides 
a solution of Denjoy's problem (U) relative to the interval (a, 6). 
In fact, if f(x) is P2-integrable over (a, b; c) it is also integrable over 
(a, j3; Y ) , w h e r e a ^ a < 7 < | 8 g 6 , and, in addition, 

G*-«) f f(x)d2x = V(F;a,p,y). 

Hence, if f(x) and F(x) are the sums of the series (1.1) and (2.2), 
respectively, Denjoy's results (2.5), (2.6) show tha t 

ƒ. o /• o 

f(x) cos mx d2x, ir2bm = I f(x) sin mx d2x. 
( ~ 2 T , 2TT) •/ ( - 2 T , 2ir) 

Thus the PMntegral also provides a complete solution to the problem 
for convergent trigonometric series. 

I t follows from a general result of Denjoy [5, §66] that a function 
with a finite generalized second derivative almost everywhere also 
has a derivative F'(x) almost everywhere. In the case of trigono­
metric series, this derivative is equal to sum of the series (4.7) 
wherever it converges. Hence another expression for the Fourier 
coefficient aQ is 

wao = F'(a + 2TT) - F'(a) 

where a £ P , the set of points a t which the series (4.7) converges. 
There are similar expressions for the other coefficients using the 
derivatives of the functions Gm(x), Hm(x) defined in §2. 

7. The symmetric Cesàro-Perron integral. Burkill [2] noted tha t 
the CP indefinite integral, being defined for all x, was not suitable for 
applications to trigonometric series because the series (4.7) need con­
verge only almost everywhere even when the series (1.1) converges 
everywhere. He therefore modified his definition of the CP-integral in 
order to have one of the same type as the MZ-integral (§4). 

He altered condition (4.1) to the condition (4.5) and replaced the 
lower Cesàro-Perron derivate by the lower symmetric Cesàro-Perron 
derivate, SCD*M(x)t defined as the lim inf as fe—»0 of 

l rh 

(7.1) — I {M(x + t) - M(x-t)\dt. 
h2J0 

He also required M(x) to satisfy 
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1 Ch 

(7.2) — I {M(x + t)-M(x-t)}dt-+0 as A->0 
h J o 

in addition to (4.5) a t the countable set of points where SCD*M(x) 
= — 00 . 

If T(x) is the integral of M(x), then SCD*M(x) = 82T(x) and con-
dition (7.2) is simply the requirement (6.1) of smoothness. I t can 
also be shown [10, Lemma 40] that 

ô2T(x) = SCD*M(x) S BD*M(x), 

BD*m(x) à SCD*m(x) = AH(x). 

Hence any function which is SCP-integrable is necessarily MZ- and 
PMntegrable, and the formulas for the coefficients are of the same 
form. 

As far as the integration of convergent trigonometric series is con­
cerned, the three types of integrals are equivalent. Whether or not 
the MZ- or P2-integral is actually more general than the SCP-
integral is not yet known. 

8. The PMntegral. James [9] extended the P2-integral by replac­
ing generalized second dérivâtes by generalized symmetric dérivâtes 
of higher order, but required that the inequalities analogous to (4.3) 
and (4.4) hold without exception. In addition a condition similar to 
the smoothness condition (6.1) was imposed a t all points of (a, b) 
with the possible exception of a countable set. Only the case w = 4 
will be considered here since it fully illustrates the difference between 
the general case and the case n = 2. 

If M{x) is continuous and D2M{x) is finite in (a, &), let 6±(xy h) 
=04(Af ; xy h) be defined by 

A4 1 h2 

— 0A(x, h) == — {M(x + h) + M(x - *)} - M(x) D2M(x). 

The lim sup and lim inf as h—»0 of 04(#, h) are the upper and lower 
generalized symmetric dérivâtes of order 4, AW(x) , ô4ikf(x), respec­
tively. If the two are equal, their common value is the generalized 
symmetric derivative of order 4, D*M(x). 

The main difference between the general case and the case n = 2 is 
that the analogue of the theorem of Schwarz does not hold. This 
theorem states that , if D2M(x)=0 throughout an interval (a, &), 
then M(x) is a linear function. I t is not true, for example, that if 
D*M(x) = 0 in (a, ft), then M(x) is a cubic function. A simple example 
given by M. Riesz [12] is the function defined by 
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w - u. 
. , * è O, 

I t is clear that M(x) is continuous, that 

[ 2 , » > 0, 

D2M(x) » | 0, « « 0, 

1-2, * < 0, 

and tha t D*M(x) is identically zero. Obviously M(x) is not a cubic 
function. The interesting part of the example is that D2M(x) has an 
ordinary discontinuity a t x = 0. If such a possibility is ruled out, the 
analogue of the theorem of Schwarz is true. I t follows from [9, 
Theorem 4.2] (with m = 2) that if M(x) is continuous, D2M(x) is 
finite and has no ordinary discontinuities, and D4M(x) = 0 in (a, &), 
then M{x) is a cubic function. In defining a majorant or minorant 
using generalized dérivâtes of order 4, the condition that the gen­
eralized second derivative have no ordinary discontinuities must be 
imposed. 

The definition of a majorant (in the P4 sense) follows the pattern of 
§§4 and 6. The function M(x) is required to be continuous and to 
vanish a t four points aif i = l , • • • , 4, such that a = ai<a 2<03<dU 
= &. Conditions (4.3) and (4.4) hold without exception with D*M(x) 
replaced by ô4Jkf(x), and the smoothness condition (6.1) becomes 
h6\(xy h)~*0 as h—»0 for all x in (a, b) with the possible exception of a 
countable set. In addition, D2M(x) has no ordinary discontinuities in 
(a, 6). A minorant is defined in a similar way. 

With each majorant and minorant there is associated the function 
defined by 

M*(x) = (-l)rM(x), m*(x) = ( - l ) 'm(* ) , for ar ^ x ^ ar+h 

r = 1, 2, 3. 

The point of the last definition is that M(x)—rn(x) is 4-convex 
[9, §2] and that then M*(x) ^tn*(x). If c is any point of (a, b), let 
J*(c) denote the inf of the numbers M*(c) for all majorants and 
j*(c) the sup of the numbers tn*(c) for all minorants. If J*(c) =j*(£), 
the function ƒ (x) is PMntegrable over (a*; c) = (ai, a2, a3, a A] c). In this 
case the function defined by ( —l)ajF(c) = J*(c)=j*(c) when a , < c 
<a 8 + i , 5 = 1, 2, 3, is the PMntegral and may be written 

(-l)tf(c) = f ƒ(*)**. -f' 
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Since J*(di) ~j*(aî) =0, the integral is zero if c = di, i = l , • • • , 4 . 
The PMntegral integrates the generalized derivative of order 4 of 

any continuous function G(x) provided that D2G(x) has no ordinary 
discontinuities. In fact, 

(8.1) ( - 1 ) ' C D*G(x)d*x = G(c) - £ > ( * ; <*<)G(a<), 
J <a<) < - l 

where \(x; a t ) = ILv* (c—a,j)/(fli — <ij) is a polynomial of the third 
degree in c. 

The application of the PMntegral to summable trigonometric 
series is based on an extension ( [15, Theorem B] and [17, §10.42]) of 
Riemann's result for the generalized second derivative. For w = 4 the 
extension is as follows: 

If the trigonometric series (1.1) is summable (C, 2) for all x to a func­
tion g(x), then the series 

1 x4 " an(x) 

(8.2) -a o-+E-V 
2 4 ! n==i nA 

{obtained by integrating (1.1) formally term-by-term four times) con­
verges uniformly to a function G{x) such that D4G(x)=g(x). 

I t also follows, of course, tha t D2G(x) is the sum of the con­
vergent series (2.2), but it is not true, in general, that D2G(x) has no 
ordinary discontinuities. For example, the series ^jn sin nx is sum­
mable (C, 2) to zero for all x, but the series — ]T) (sin nx)/n con­
verges to ~ (7 r+x) /2 i f — 27r<x<0, to zero if x = 0,and to — (TT — X)/2 
if 0<#<27r . Thus there is an ordinary discontinuity a t x = 0. 

The difficulty is overcome by imposing a condition on the coeffi­
cients of the series (4.7) obtained by integrating (1.1) formally term-
by-term. The condition is that bn(x)/n-*0 (C, 1), which is equivalent 
to requiring tha t the series ^2{bn(x)/n — bn+i(x)/(n + l)} be sum­
mable (C, 1) to bi(x). I t then follows by a slight modification of 
Zygmund's argument [17, §10.42] that G'(x) exists and that 

G(x + h) - G(x) - hG'(x) 
D2G(x) = lim V — — • 

h-o h*/2\ 
Hence D2G(x) is equal to G(2)(x), the second differential coefficient of 
G(x), which by [9, Lemma 8.1] cannot have an ordinary discon­
tinuity. In the example above, bn(x)/n~ cos nx, which for x = 0, the 
point of discontinuity of D2G{x)1 does not tend to zero (C, 1). 

The condition bn(x)/n-^0 (C, 1) is not strong enough to deal with 
formal multiplication of summable trigonometric series. However, if 
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bn(x)-*0 (C, 2), then the formal products of (1.1) and cos mx and 
sin mx are summable (C, 2) to g(x) cos mx and g(#) sin mx whenever 
(1.1) is summable (C, 2) to g(x). Zygmund proves this for Abel sum-
mability and indicates in a footnote [16, p. 79] that analogous results 
hold for Cesàro summability. 

Since bn(x)—*0 (C, 2) implies that bn(x)/n—>0 (C, 1), the stronger 
condition is used in the final result which may be summed up as 
follows: 

If the trigonometric series (1.1) is summable (C, 2) to a function g(x) 
and if bn(x)-*0 (C, 2) for all x, then g(x), g(x) cos mx, g(x) sin mx are 
PA-integrable. It also follows from (8.1) that the coefficients of (1.1) are 
given by 

4TT4 r ° 
(8.3) am = I g(ff) cos tnxdtx, 

3 J (Of) 
4TT 4 f° 

(8.4) bm = I g(#) sin tnxdtx, 
3 •/ <a<) 

Wfeer^ ( # ; ) = ( — 47T, ~27T, 27T, 47r). 

The general result takes the same form with summability (C, 2) 
replaced by summability (C, k), k^l, and the PMntegral by the 
P*+2-integral. The numerical coefficients of am and bm in (8.3) and 
(8.4) and the set (a*) have different forms according as k is even or 
odd. If fe = 2 r - 2 , the numerical coefficient is 22r~17r2r(r!)2/(2r)! and 

(ai) = ( —2nr, • • • , —27r, 27r, • • • , 2rw). 

If * = 2 r - l , the numerical coefficient is 22rT2r+1r\(r+l)!/(2r + 1)! and 

(a*) = ( - ( 2 r + 1)TT, • • • , -3?r, ~TT, 3TT, • • • , (2r + 1)TT) 

and the 0 in the integral becomes 7r. 
Thus, if a trigonometric series is summable (C, k) and the coeffi­

cients of the conjugate series tend to zero (C, k) for all x, the P*+2-
integral provides a complete solution to the problem of expressing 
the coefficients in terms of integrals analogous to the usual Fourier 
formulas. 
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