
THE THEORY OF DYNAMIC PROGRAMMING 
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1. Introduction. Before turning to a discussion of some representa­
tive problems which will permit us to exhibit various mathematical 
features of the theory, let us present a brief survey of the funda­
mental concepts, hopes, and aspirations of dynamic programming. 

To begin with, the theory was created to treat the mathematical 
problems arising from the study of various multi-stage decision 
processes, which may roughly be described in the following way: We 
have a physical system whose state at any time / is determined by a 
set of quantities which we call state parameters, or state variables. 
At certain times, which may be prescribed in advance, or which may 
be determined by the process itself, we are called upon to make de­
cisions which will affect the state of the system. These decisions are 
equivalent to transformations of the state variables, the choice of a 
decision being identical with the choice of a transformation. The out­
come of the preceding decisions is to be used to guide the choice of 
future ones, with the purpose of the whole process that of maximizing 
some function of the parameters describing the final state. 

Examples of processes fitting this loose description are furnished 
by virtually every phase of modern life, from the planning of indus­
trial production lines to the scheduling of patients at a medical 
clinic ; from the determination of long-term investment programs for 
universities to the determination of a replacement policy for ma­
chinery in factories; from the programming of training policies for 
skilled and unskilled labor to the choice of optimal purchasing and in­
ventory policies for department stores and military establishments. 

I t is abundantly clear from the very brief description of possible 
applications tha t the problems arising from the study of these 
processes are problems of the future as well as of the immediate 
present. 

Turning to a more precise discussion, let us introduce a small 
amount of terminology. A sequence of decisions will be called a 
policy, and a policy which is most advantageous according to some 
preassigned criterion will be called an optimal policy. 

The classical approach to the mathematical problems arising from 
the processes described above is to consider the set of all possible 

An address delivered before the Summer Meeting of the Society in Laramie on 
September 3, 1953 by invitation of the Committee to Select Hour Speakers for An­
nual and Summer meetings; received by the editors August 27,1954. 

503 



504 RICHARD BELLMAN [November 

sequences of decisions, which is to say, the set of all feasible policies, 
compute the return from each such feasible policy, and then maximize 
the return over the set of all feasible policies. 

I t is evident that, straightforward and reasonable as such a pro­
cedure is, it is often not practical. For processes involving even a 
moderate number of stages and a moderate range of choices at each 
stage, the dimension of the resultant maximization problem will be 
uncomfortably high, with continuous processes requiring maximiza­
tion over function space. 

If we momentarily re-examine the situation, not as a mathe­
matician, but as a "practical man," we see that this price of exces­
sive dimensionality—a price that occasionally makes even a modern 
computing machine cringe—arises from a demand for too much in­
formation. How much information is actually required to carry out a 
multi-stage decision process? 

Do we require a knowledge of the complete sequence of decisions, 
those to be performed at the present stage, those at the next stage, 
and so on? Not at all! I t is sufficient to furnish a general prescription 
which determines at any stage the decision to be made in terms of the 
current state of the system. In other words, if at any particular time 
we know what to do, it is never necessary to know the decisions re­
quired at subsequent times. 

Donning our mathematical cap again, we see that this common-
sense atti tude reduces the dimension of the problem to its proper 
level, namely the dimension of the decision problem that confronts 
one at any particular time. 

For the case of deterministic processes, which is to say, those where 
the initial state and the decision uniquely determine the outcome, 
both viewpoints are possible. For the case of stochastic processes, 
where a decision determines only a distribution of outcome states, 
the classical enumerative approach is virtually impossible. 

2. The fundamental approach. As stated above, the basic idea of 
the theory of dynamic programming is that of viewing an optimal 
policy as one determining the decision required at each time in terms 
of the current state of the system. Following this line of thought, the 
basic functional equations given below describing the quantitative 
aspects of the theory are uniformly obtained from the following 
intuitive 

PRINCIPLE OF OPTIMALITY. An optimal policy has the property that 
whatever the initial state and initial decisions are, the remaining de-
cisions must constitute an optimal policy with regard to the state resulting 
from the first decisions. 
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The functional equations we shall derive are of a difficult and 
fascinating type, wholly different from any encountered previously in 
analysis. Nonetheless, as we shall see below, they may be utilized to 
provide an entirely new approach to some classical problems. 

3. Mathematical formulation—I. A discrete deterministic process. 
To illustrate the type of functional equation that arises from an ap­
plication of the principle of optimality, let us begin with the simplest 
case of a deterministic process where the system is described at any 
time by an ikf-dimensional vector p~{pu p%, • • • , PM), constrained 
to lie within some region D. Let J T = { 7 \ } , where k runs over a set 
which may be finite, enumerable, or continuous, be a set of trans­
formations with the property that p&D implies that Tk(p)ÇzD for 
a l l* . 

Let us assume that we are considering an iV-stage process to be 
carried out to maximize some scalar function, R(p) of the final state. 
We shall call this function the iV-stage return. A policy consists of a 
selection of N transformations, P = (JTI, T2f • • • , 7V), yielding suc-
cessivelv the states 

(3.1) 

Pi = T^p), 

p% = T2(pi), 

pN = TN(PN-I)-

If D is a finite region, if each Tk(p) is continuous in p, and if R{p) 
is a continuous function of p for p<ED, it is clear that an optimal 
policy exists. The maximum value of R(PN), determined by an 
optimal policy, will be a function only of the initial vector p and the 
number of stages N. Let us then define 

MP) = Max R(pN) 

(3.2) 
= the iV-stage return obtained using an optimal policy 

starting from the initial state p. 

To derive a functional equation for ƒ#(£), we employ the principle 
cited above. Assume that we choose some transformation T& as a re­
sult of our first decision, obtaining thereby a new state Tk(p). The 
maximum return from the following (N—l) stages is, by definition, 
fN-i{Tk(p)). I t follows that k must now be chosen so as to maximize 
this. The result is the basic functional equation 

(3.3) fN(p) = M a x / t f - i C r ^ ) ) , N = 2, 3, • • • . 
i 
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I t is clear that a knowledge of any particular optimal policy, not 
necessarily unique, will yield ƒ#(£)> which is unique. Conversely, 
given the sequence {/N(P) }, all optimal policies may be determined. 

We thus have a duality between the space of functions and the 
space of policies which is of great theoretical and computational im­
portance. This point will be discussed again below. 

4. Mathematical formulation—II: Discrete stochastic case. Let us 
now consider the case where the transformations are stochastic 
rather than deterministic. A choice of a transformation Tk now yields 
a stochastic vector z as the new state vector with an associated vector 
distribution function dGk(p, z). 

It is clear that it is now in general meaningless to speak of maximiz­
ing the return. We must agree to measure the value of a policy in 
terms of some average value of the function of the final state. Let us 
call this expected value the iV-stage return. 

We now define /N(P) as before in terms of the iV-stage return. If z 
is the state resulting from any initial transformation Tk, the return 
from the last (iV — 1) stages will be fN-i(z). The expected return as a 
result of the choice of Tk is 

(4.1) f fN-i(z)dGk(p, z). 

Hence, the functional equation îor fN(P) is 

(4.2) fN(p) = Max f fN-i(z)dG(p, z), N = 2, 3, • • • . 

Note that the deterministic process may be considered to be merely a 
particular case of a stochastic process. 

5. Mathematical formulation—III: Infinite stochastic process. For 
mathematical purposes, it is frequently useful to consider the fic­
titious infinite process in which there are an unbounded number of 
stages. In that case, the sequence /N(P) is replaced by the single func­
tion 

AP)=MP), 
and the formal equivalent of (3.2) is 

(5.1) ƒ(ƒ>) = Max f f(z)dGk(p, z). 

6. Mathematical formulation—IV: Continuous deterministic proc-



1954] THE THEORY OF DYNAMIC PROGRAMMING 507 

ess. If we consider a continuous process where a decision must be 
made a t each point of a time interval, we are led to maximization 
problems over function spaces. The simplest examples of these prob­
lems are furnished by the calculus of variations. As we shall show be­
low, our approach leads to a new view of this classical theory. 

Defining 

(6.1) f(p; T) = the return obtained over a time interval [0, T] using 
an optimal policy starting from an initial state p, 

the analogue of the functional equation of (3.3) is 

(6.2) f(p; S+T) = Max/ ( r*(#) ; 7% 
D[0,S] 

where the maximum is taken over all allowable decisions made over 
the initial interval [0, S], 

As soon as we consider infinite processes, we are confronted by the 
difficulty of showing that the maximum is actually attained. Conse­
quently, in general, we must initially replace (6.2) by the rigorous 
equation 

(6.3) f(p;S+T) = Sup / (Ta te ) ; 3T) 
D[0fS] 

and then show, under various assumptions, that the extremum is at­
tained. 

As will be shown below, the limiting form of (6.3) as S—>0 yields a 
partial differential equation. 

We shall not discuss here the corresponding problem for the case of 
stochastic processes since a number of interesting and difficult con­
ceptual questions arise which have not as yet been fully resolved. 

7. Some examples—I: An allocation problem. Before proceeding 
any further with our general discussion, let us illustrate these ideas 
by means of a number of examples, of both stochastic and determin­
istic type, which are representative of the types of problems which 
fall within the domain of the general theory. 

PROBLEM 1. We are given a quantity x>0 that may be divided into 
two non-negative parts, y and x —y. From y we obtain a return of 
g(y), a t the expense of reducing y to ay where 0 <a < 1 ; from x~y we 
obtain a return of h(x~y) a t the expense of reducing x— y to b(x —y) 
where 0 < & < 1 . The process is now repeated with the new initial 
quantity ay+b(x —y), and so on indefinitely. How does one allocate 
a t each stage so as to maximize the total return obtained over the 
entire process? 



508 RICHARD BELLMAN [November 

This is a very simple prototype of a large class of important alloca­
tion and investment problems which occur in a number of diverse 
activities. 

Let 

(7.1) f(x) = the total return obtained employing an optimal policy, 

above, it is readily seen that f(x) satisfies the functional 

= Sup [g(y) + h(x - y) + f {ay + b(x - y))L x > 0, 

= 0. 

For a discussion of the various ways in which this equation can 
arise, and some of the analytic results which can be obtained, we 
refer the reader to [4; 6; 11; 12]. 

Treatment of the closely related optimal inventory problem may 
be found in [2; 29; 15]. 

8. Some examples—II: Stochastic gold mining. Let us now con­
sider the following example : 

PROBLEM 2. We are fortunate enough to possess two gold mines, 
Anaconda and Bonanza, and a sensitive gold-mining machine with 
the following characteristics: If the machine is used in Anaconda, it 
will mine, with probability p, a fixed fraction r of the gold there and 
be undamaged; with probability (1—p) it will mine nothing and be 
damaged beyond repair. If the machine is used in Bonanza, it will 
mine, with probability q, a fixed fraction 5 of the gold there and be 
undamaged; with probability (1—g) it will mine nothing and be 
damaged beyond repair. 

At each stage, as long as the machine is undamaged, we have our 
choice of using the machine in Anaconda or Bonanza. Given the 
initial amounts, x and y respectively in each mine, what sequence of 
choices maximizes the expected amount mined before the machine is 
damaged? 

Let 

(8.1) f(x, y) = the expected amount of gold mined before the ma­
chine is damaged using an optimal policy, starting 
with x in Anaconda and y in Bonanza. 

I t is easily seen that f(x, y) satisfies the functional equation 

,fi 0 , ., , _ , rA:p[rx+f((l-r)x,y)]l 
(8.2) f(x,y) = Max . 

LB: q[sy+f(x, (1 - s)y)\A 

Arguing as 
equation 

ƒ(*) (7.2) 

/(0) 
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The solution has the following simple structure: 

a. For prx/(l — r) > qsy/(l — s), choose A, 

(8.3) b. For prx/(l - r) < qsy/(l - s), choose B, 

c. For prx/(l — r) = qsy/(l — s), choose either. 

Using this prescription, ƒ(#, ;y) may be computed recurrently. The 
boundary curve between the two decisions regions is the locus of 
points where immediate expected gain over immediate expected loss 
is the same for both choices. Unfortunately, as a counterexample of 
Karlin and Shapiro [36] shows, this simple and intuitive rule is not 
valid generally in more complicated decision processes. 

For a discussion of further results and extensions of both discrete 
and continuous types, see [3; 9; 11; 25; 26]. 

9. Some examples—III : A problem in the calculus of variations. 
A simple example of a continuous decision process is furnished by the 
following problem in the calculus of variations: 

PROBLEM 3. Maximize f%F(x, y)dt over all y where x and y dire con­
nected by the relation dx/dt = G(x, y), x(0)=c. 

The classical technique in the calculus of variations, patterned 
directly after the technique used in maximization problems in finite-
dimensional spaces, consists of considering the function yielding an 
extremum as a point in function space. This point is now character­
ized by means of variational properties, of which the most im­
portant is the Euler equation. 

This approach corresponds to finding y as a function of L Instead, 
we shall view the problem as a continuous decision process and seek 
to determine y a t any time as a function of the two state parameters, 
c and T. Let us then set 

f F(x, 
J o 

(9.1) f(c, T) = Max I F(xy y)dt. 
v J o 

We shall in what follows proceed completely formally, assuming the 
maximum is attained, that all functions have the requisite number of 
continuous derivatives, and so on. Using the principle of optimality, 
we see that ƒ (c, T) satisfies the equation 

(9.2) 

f(c, S + T) = Max T f F(x, y)dl + f F(x, y)dt\ 

- Maxi" f F(x, y)dt+MS), T)], 
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where c(S) is x a t t = S. Assuming that y is continuous, we obtain 
after a simple computation the limiting form of (9.2) as 5—>0 

(9.3) fT = Max [F(c, v) + G(G, v)fe], 

where v = y(0). Proceeding formally, we have for the determination of 
the maximum 

(9.4) Fv+Gvfc = 0. 

Eliminating ƒ between (9.3) and (9.4), we obtain the first-order partial 
differential equation 

(9 5) (-—\v = (FGv ~~ GFv\ v + (FGv ~ GFv\ 
\ Gv/v \ Gv / v \ Gv /c 

The characteristics of this equation lead directly to the Euler equa­
tion obtained by the usual variational approach : 

(9.6) Gy — (—) = 
it \GV) 

The same is true in the multi-dimensional problem where x, y and 
G(x, y) are vectors and F(x, y) is a scalar function. The case where 
the integrand contains t explicitly can always be reduced to the above 
by the introduction of a new dependent variable. 

If we add to our original problem a constraint such as O^y^x, 
one which occurs frequently in connection with allocation and in­
vestment problems, the functional equation is replaced by 

(9.7) fT = Max [F(c, v) +G(c, v)fe]. 

Various conditions under which this problem has a solution of par­
ticularly simple structure are given in [17]. We might note in passing 
that the difficulty induced by a constraint of the type above is due to 
the fact that free variation is not permitted whenever y has an ex­
treme value of 0 or x, and consequently inequalities replace equalities. 

Further discussion of these techniques will be found in [10; 16; 
17; 18]. 

10. Some examples—IV: An eigenvalue problem. This functional-
equation approach is also applicable to eigenvalue problems associ­
ated with differential equations of the form 

du2 

(10.1) h X20(O« = 0, «(0) = u(l) = 0 
dt2 

r x ry 

Gx Gu 
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where we are interested in the values of X2 which yield nontrivial solu­
tions u. 

Under suitable conditions upon <f>{t)1 this problem is equivalent to 
that of determining the successive minima of Jlundt subject to the 
constraints Jl<f>(t)uHt~ 1, w(0) = u(\) = 0. In order to employ the func­
tional equation, we imbed the problem within the more general prob­
lem of determining the successive minima of 

u'HS 
a 

subject to the constraints 

(a) u(a) = u(a + t) = 0, 

(10.3) ra+t Ca+t 

(b) I <!>{S)u2dS + k I <j>(S)(a + t - S)u(S)dS = 1. 
J a J a 

Writing Minw J(u) = / (a , k, t), we can derive a partial differential 
equation for/ , which is nonlinear. Using the fact that </> may be con­
sidered constant, and equal to <£(a), for small /, this equation may be 
used to determine the eigenvalues computationally (see [10; 16; 18]). 

11. Some examples—V: Games of survival. As our last example, 
let us consider a particularly interesting example of a multi-stage 
game, the so-called "game of survival." 

Let us assume that two players, A and B, are playing a zero-sum 
game determined by the matrix 

A^idij), i,j = l, • • • , N, 

and that A starts initially with an amount of money x, and B starts 
initially with y. Both are playing the game with the purpose of ruin­
ing the other. How should both play? 

Let us define, for x and y positive, 

(11.1) fix y) = the probability that A ruins B, given that A starts 
with x, and B with y, and both play optimally. 

I t is clear that A wishes to maximize this probability and B wishes 
to minimize it. 

For other values of x and y, f(x, y) is defined as follows: 

J ' 11, y Û0, x>0. 

It is now clear that ƒ (x, y) satisfies the functional equation 
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f(x, y) = Max Min ] £ piQjfix + aih y - an) 

(ii.3) ' ' T'-\ J 

= Min Max [ • • • J.1 

a v 

Since the total sum of money in the game remains constant, it is 
clear that we can replace f(x, y) by a function of one variable, x. 

For further developments, we refer the reader to [3; 37], and to 
a recent paper by Shapley [39], 

12. Approximation in policy space and monotone convergence. The 
functional equations we have derived above are, in the main, ana­
lytically intransigent. The theoretical and numerical properties of the 
solutions must then be derived by use of that general factotum of 
analysis, the method of successive approximations. If our functional 
equation has the form 

(12.1) f(p) - T(f(p)), 

as do those above, we choose an initial function ƒo(p), and obtain a 
sequence of functions by means of the algorithm 

(12.2) fn+1(p) = T(fn(p))} n = 0, 1, • • • . 

The physical background will usually provide precisely the conditions 
req aired for geometric convergence of this sequence to the solution 
of (12.1), where the uniqueness will be equally guaranteed by the 
same conditions. This technique we call approximation in function 
space. 

Let us recall, however, that in a sense the function f(p) is not of 
paramount importance. Rather, it is the optimal policies which yield 
f(p) tha t are the most important. I t follows that it may be wiser to 
approximate to optimal policies rather than to approximate directly 
to maximum returns. 

In many ways this is a simpler and more natural technique, as well 
as more practical in applications. The principal theoretical advantage 
lies in the fact that we now obtain monotone convergence. 

To illustrate this in its simplest form, let us consider the functional 
equation discussed in 

(12.3) ƒ(*) = Max [g(y) + h(x - y) + f(ay + b(x - y))]. 
0£v£x 

Perhaps the simplest initial guess is to assume that y = 0 continually. 
1 This approach is also applicable to nonzero sum games and yields a new rationale 

for optimal play, see [47]. 
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This yields as our initial approximation to the maximum return the 
function fo(x) satisfying the functional equation 

(12.4) ƒ«,(*) = h(x)+Mbx). 

It is now clear that the fuuction fi(x) determined by 

(12.5) Mx) = Max [g(y) + h(x - y) + f0(ay + b(x - y))] 

is always greater than or equal to fo(x). Hence, inductively, if 

(12.6) fn+1(x) = Max [g(y) + h(x - y) + fn(ay + b(x - y))], 

n = 0. 1, • • -, 

we have 

(12.7) Afi(«) è ƒ.(*) 

and thus monotone convergence; see [3; 8 ] . 
A completely analogous technique is applicable to continuous proc­

esses, and in particular the calculus of variations. The results are 
particularly interesting in connection with eigenvalue problems where 
we obtain monotone convergence (see [16; 18]). 

13. Further results. We have not the space here to discuss any of 
a number of other interesting and important problems in dynamic 
programming. For those interested in bottleneck problems occurring 
in multi-stage production processes, we refer to [7; 14; 27]. 

Those interested in scheduling problems may consult [22; 23; 33]. 
A number of mathematical problems occurring in connection with 

the control of engineering and economic systems are discussed in [20; 
21]. 

Finally, we should like to mention a number of papers concerned 
with the very difficult mathematical problems occurring in the gen­
eral theory of learning processes [32; 34; 35; 24]. 

BIBLIOGRAPHY 

1. K. J. Arrow, D. Blackwell, and M. A. Girshick, Bayes and minimax solutions of 
sequential decision problems, Econometrica vol. 17 (1949) pp. 214-244. 

2. K. J. Arrow, T. E. Harris, and J. Marschak, Optimal inventory policy, Cowles 
Commission Paper No. 44, 1951. 

3. R. Bellman, An introduction to the theory of dynamic programming, The RAND 
Corporation, Report R-245, 1953. 

4. , On games involving bluffing, Rend. Circ. Mat. Palermo (2) vol. 1 (1952) 
pp.1-18. 

5. , On the theory of dynamic programming, Proc. Nat. Acad. Sci. U.S.A. 
vol. 38 (1952) pp. 716-719. 



514 RICHARD BELLMAN [November 

6. , Some problems in the theory of dynamic programming, Econometrica vol. 
22 (1954) pp. 37-48. 

7. , On bottleneck problems and dynamic programming, Proc. Nat. Acad. 
Sci. U.S.A. vol. 39 (1953) pp. 947-951. 

8. , On computational problems in the theory of dynamic programming, 
Symposium of Numerical Methods, Santa Monica, 1953, The RAND Corporation, 
Paper P-423. 

9. , Some functional equations in the theory of dynamic programming, Proc. 
Nat. Acad. Sci. U.S.A. vol. 39 (1953) pp. 1077-1082. 

10. , Dynamic programming and a new formalism in the calculus of variations, 
Proc. Nat. Acad. Sci. U.S.A. vol 40 (1954) pp. 231-235. 

H# 1 The theory of dynamic programming, a general survey, Chapter from 
"Mathematics for Modern Engineers" by E. F. Beckenbach, McGraw-Hill, forthcom­
ing. 

12. 1 Some applications of the theory of dynamic programming to logistics, 
Navy Quarterly of Logistics, September 1954. 

13. , Some applications of the theory of dynamic programming—a review, 
Operations Research Quarterly, June 1954. 

14# f Bottleneck problems, functional equations, and dynamic programming, 
The RAND Corporation, Paper P-483, January 1954; Econometrica (to appear). 

15. , On a functional equation arising in the problem of optimal inventory, 
The RAND Corporation, Paper P-480, January 1954. 

16# f Dynamic programming and the calculus of variations—I, The RAND 
Corporation, Paper P-495, March 1954. 

17# 1 Dynamic programming and the calculus of variations—II, The RAND 
Corporation, Paper P-512, April 1954. 

18# f Monotone convergence in dynamic programming and the calculus of 
variations, The RAND Corporation, Paper P-513, April 1954. 

19. R. Bellman and D. Blackwell, Some two-person games involving bluffing, 
Proc. Nat. Acad. Sci. U.S.A. vol. 35 (1949) pp. 600-605. 

20. R. Bellman, I. Glicksberg, and O. Gross, On some variational problems occurring 
in the theory of dynamic programming, Proc. Nat. Acad. Sci. U.S.A. vol. 39 (1953) pp. 
298-301. 

21. , On some variational problems in the theory of dynamic programming, 
Rend. Circ. Mat. Palermo, forthcoming. 

22. , The theory of dynamic programming as applied to a smoothing problem, 
Journal of the Society for Industrial and Applied Mathematics, forthcoming. 

23. R. Bellman and O. Gross, Some combinatorial problems arising in the theory of 
multi-stage processes, The RAND Corporation, Paper P-456, November 1953. 

24. R. Bellman, T. E. Harris, and H. N. Shapiro, Studies on functional equations 
occurring in decision processes, The RAND Corporation, Paper P-382, August 1952. 

25. R. Bellman and R. S. Lehman, On the continuous gold-mining equation, Proc. 
Nat. Acad. Sci. U.S.A. vol. 40 (1954) pp. 115-119. 

26. , On a functional equation in the theory of dynamic programming and its 
generalizations, The RAND Corporation, Paper P-433, January 1954. 

27. f Studies on bottleneck problems in production processes, The RAND 
Corporation, Paper P-492, February 1954. 

28. R. R. Bush and C. F. Mosteller, A mathematical model for simple learning, 
Psychological Review vol. 58 (1951) pp. 313-325. 

29. A. J. Dvoretzky, J. Kiefer, and J. Wolfowitz, The inventory problem—I: 



J954] THE THEORY OF DYNAMIC PROGRAMMING 515 

Case of known distributions of demand, and The inventory problem—II: Case of un­
known distributions of demand, Econometrica vol. 20 (1952) pp. 187-222. 

30. A. J. Dvoretzky, A. Wald, and J. Wolfowitz, Elimination of randomization 
in certain statistical decision procedures and zero-sum two-person games, Ann. Math. 
Statist, vol. 22 (1951) pp. 1-21. 

31. W. K. Estes, Toward a statistical theory of learning, Psychological Review vol. 
57 (1950) pp. 94-107. 

32. M. M. Flood, On stochastic learning theory, The RAND Corporation, Paper 
P-353, December 1952. 

33. S. Johnson, Optimal two- and three-stage production schedules with setup times 
included, The RAND Corporation, Paper P-402, May 1953. 

34. S. Johnson and S. Karlin, On optimal sampling procedure for a problem of two 
populations—I, The RAND Corporation, Paper P-328, October 1952. 

35. S. Karlin, A mathematical treatment of learning models—I, The RAND 
Corporation, Research Memorandum RM-921, September 1952. 

36. S. Karlin, and H. N. Shapiro, Decision processes and functional equations, The 
RAND Corporation, Research Memorandum RM-933, September 1952. 

37. M. Peisakoff, More on games of survival, The RAND Corporation, Research 
Memorandum RM-884, June 1952. 

38. H. Robbins, Some aspects of the sequential design of experiments, Bull. Amer. 
Math. Soc. vol. 58 (1952) pp. 527-536. 

39. L. Shapley, Stochastic games, Proc. Nat. Acad. Sci. U.S.A. vol. 39 (1953) pp. 
1095-1100. 

Added in proof, November, 1954. Some additional papers which have appeared 
since the above list was compiled, and which may be of interest, are 

40. R. Bellman, Dynamic programming and continuous processes, The RAND 
Corporation, Report R-271, November 1954. 

41. , Some functional equations in the theory of dynamic programming—I, 
Point functions and point transformations, The RAND Corporation, Paper P-566, 
September 1954. 

42. , An iterative procedure f or the determination of the Perron root of a posi­
tive matrix, The RAND Corporation, Paper P-577. 

43. , On a quasi-linear equation, The RAND Corporation, Paper P-575. 
44. , Dynamic programming and a new formalism in the theory of integral 

equations, Proc. Nat. Acad. Sci. U.S.A., to appear. 
45. , A problem in the sequential design of experiments, The RAND Corpo­

ration, Paper P-586. 
45# 1 Decision-making in the face of uncertainty—I, Navy Quarterly of 

Logistics, September 1954. 
47. , Decision-making in the face of uncertainty—II, Navy Quarterly of 

Logistics, December 1954. 
48. , Dynamic programming and multi-stage decision processes of stochastic 

type, Symposium on Linear Programming, Washington, D. C , December, 1954. 
49. R. Bellman, I. Glicksberg, and O. Gross, On the optimal inventory equation, 

The RAND Corporation, Paper P-572. 
50. , On some mathematical problems arising in the theory of optimal inven­

tory and stock control, The RAND Corporation, Paper P-580. 

THE RAND CORPORATION 


