
GRADIENT MAPPINGS 

E. H. ROTHE 

1. Introduction. A gradient field in a finite-dimensional Euclidean 
space is a field of vectors g(x) for which there exists a scalar function 
I(x) such that g(x) ==grad I(x). A classical example is a conservative 
force field in which case I(x) is the potential. It has been known for a 
long time that the treatment of such fields offers a considerable 
number of simplifications and special properties not shared by arbi­
trary vector fields. On the other hand those boundary value and 
integral equation problems which can be derived from variational 
problems likewise offer simplifications and special properties not 
shared by more general problems of this type. Now the relation be­
tween an integral in the calculus of variations which is to be made an 
extremum and the corresponding Euler-Lagrange equation, or rather 
the operator given by the Euler-Lagrange expression, is quite anal­
ogous to the relation between the scalar I(x) and its gradient. I t 
seems therefore reasonable to expect that with a proper definition of 
the term gradient one will be able to obtain a theory which encom­
passes the finite-dimensional as well as the function space case.1 

2. The definition of the term gradient mapping. If I(x) is a dif­
ferent ia te scalar defined for points x = (xi, ) of a Euclidean 
w-space JE, then the differential dl corresponding to the increment 
h = (hu h2, • • • , hn) is given by 

n 

(2.1) dl = X dl/dxphp = (grad / , h) 

where the parentheses indicate the scalar product. Thus g(x) 
=grad I(x) assigns to the point x of E the linear form lx(h)—dl 
= (g(#), h), tha t is, an element of the conjugate space E* of E. This 
remark motivates the following definition. 

DEFINITION 2.1. Let E be a real Banach space.2 Let I = I(x) be a 
scalar function defined in E or part of E. Suppose that I possesses a 
continuous Fréchet differential, that is, that there exists a linear 

An address delivered before the Norman meeting of the Society on November 
23, 1951 by invitation of the Committee to Select Hour Speakers for Western Sec­
tional Meetings; received by the editors December 24, 1951. 

1 The use of gradients in Hubert space for the treatment of functional equations 
seems to occur first in [9], (Numbers in brackets refer to the bibliography at the end 
of the paper.) 

2 For the definition of a Banach space see, for example, [14, p. 10]. 
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bounded functional of A, lx(h) =*D(x, h), depending continuously on x 
such that 

(2.2) I(x + *) - I(x) = D(x, h) + R(%, h) 

where with the usual notation ||ft|| for the norm of h 

(2.2') Hm R(x, h)/\\h\\ = 0. 
lUII-o 

If E* denotes the conjugate space [14, p. 21] of E, then the Fréchet 
differential D(x, h) ~lx(h) induces a mapping of E (or part of E) into 
E* which maps the point x of E into the point lx(h) = lx of E*. Any 
mapping of E (or part of E) into E* which is thus induced by the 
Fréchet differential of a scalar is called a gradient mapping. 

If h—lx(h) is a given map of E (or part of it) into E* which has a 
continuous Fréchet differential (with respect to x) ôx(ht k), then the 
symmetry of the bilinear form (in h and k) ôx(h, k) is a necessary and 
sufficient condition that lx is a gradient map. This follows immedi­
ately from a theorem by Kerner [15, Satz 2']. 

If E is especially a Hubert space,3 it is well known that to a given 
linear bounded functional 1(h) there exists a uniquely determined ele­
ment g of E such that 1(h) =(g, h)} and that one may consider E as 
identical with E* by identifying I with g. In this sense we consider 
in a Hubert space as the gradient of I(x) the element g(x) of E which 
is uniquely determined by 

D(x, h) = /.(*) = (g(x), h). 

Thus dl=(g(x), h) in obvious generalization of (2.1). 
If G(x) is a given map of the Hubert space E or part of it into 

itself which has a continuous Fréchet differential (with respect to x) 
Lx(k), then a necessary and sufficient condition that G(x) is a gradient 
is that the bounded linear operator (in k)Lx(k) be symmetric, that is, 
that (Lx(k), h) = (£, Lx(h)). This is a nearly immediate consequence4 

of the criterion for general Banach spaces stated above. In the special 
case that the given G(x) is a bounded linear operator, its Fréchet 
differential Lx(k) =G(fe). Thus the necessary and sufficient condition 
for a bounded linear operator to be a gradient is its symmetry.6 

From this point of view gradients appear as a natural generaliza-
3 A Hilbert space is a Banach space in which for any two elements x, y a scalar 

(#, y) satisfying the usual rules is defined such that (x, x)112 is the norm of x. 
4 See [26, Lemma 2.3]; compare also [22, Lemma 3.1 and the "Remark to Lemma 

3.1," p. 585], where slightly different definitions were used. 
6 For the treatment of eigenvalue and boundary value problems connected with 

such operators, we refer to the classical treatment in [7]. 
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tion of symmetric linear operators.6 

3. Examples. We list a few examples of scalars and their gradients. 
To most of these examples we shall have to refer later on. 

EXAMPLE 1. Let A(x) be a linear bounded symmetric operator de­
fined in a Hubert space E, and let 

(3.1) I(x) = (l/2)(A(x)9 x). 

Then grad I—A(x). Note that the remainder term R(x, h) of (2,2) 
becomes in our case 

(3.2) JR(*f h) = (A(h), h)/2 

and therefore due to the supposed boundedness of A certainly satis­
fies (2.2'). As a special case we mention 

(3.3) I{x) = — f f K(s, f)x(s)x(t)d$dt, 
2 J J) J D 

(3.4) grad I = A{x) - f K(s, t)x(t)dt (K(s, t) - K(f, s))9 
J D 

where D is a bounded domain in a Euclidean w-space, 5 
= (si, $2, • • • t sn) a point of D, and the integration is extended over 
D. The Hubert space E is the space of all functions x(s) square 
integrable over D. Under certain assumptions about the kernel K(s, t) 
the symmetric operator (3.4) is indeed bounded.7 Under somewhat 
more restrictive conditions, e.g., if 

(3.5) f f K(s,t)2dsdt < oo, 
J D J D 

the operator is completely continuous.8 

6 Thus, the operators G(x) in a Hubert space called by Lusternik [17] symmetric 
and homogeneous of order p — 1 are in the terminology of the present paper gradients 
for which the corresponding scalars I(x) are homogeneous, that is, satisfy equa­
tion (4.5) of the present paper. In generalization of the classical case of linear positive 
definite symmetric operators (pasa2), the existence of infinitely many positive eigen­
values X»- with Xi^X 2 ^Xs^ • • • and lim4%w Xi = 0 is proved in [17] for operators 
G which are homogeneous with even p, completely continuous and positive, that is, 
for which (G(x), x) > 0 for XT*0. Soboleff [32] obtains a similar result for symmetric, 
completely continuous, positive definite Hubert space operators G(x) with G(—x) 

7 See, for example, [30, pp. 32 and 36]. 
8 A map of a Banach space E (or part of it) into the Banach space Ei (which may 

coincide with E) is called completely continuous if (i) it is continuous, and (ii) the 
image of every bounded set is compact in E\ (in the sense of the definition given in 
[2, p. 84]). 
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EXAMPLE la. With the same notations as in example 1, let A(x) 
be an unbounded linear symmetric operator defined in a linear subset 
of the Hubert space E. In this case we can no longer conclude that 
the remainder term (3.2) satisfies (2.2'), and therefore A(x) is in 
general not the gradient of the scalar (3.1). Consider, for example, 
the linear symmetric operator 

(3.6) A(y)-B(y) + y 

with 

13.1) B(y) --if(.f). 
Here y—y(s) is a function of the point s — (si, s*, • • • , sn) of the 
domain D which vanishes on the boundary of D and for which the 
derivatives occurring in B exist and are continuous while p=p(s) is a 
given positive differentiable function of s. Application of Green's 
formula shows that the scalar (3.1) becomes the generalized Dirichlet 
integral 

(3.8) - (A(y), ?) - y ƒ {# Ê Qy/ds,)* + ƒ } is. 

EXAMPLE 2. Let E be the space of all functions x=x(t) which to­
gether with their first derivative are defined and continuous in 
0 £ * £ 1 . With the norm 

|| x\\ = max | *(/) | + max | *'(/) | 

E becomes a Banach space [4, pp. 11 and 54]. Let 

!(*) = f /ft *(0. x'(t))dt. 
J o 

Then under proper assumptions about the given function ƒ the 
Fréchet differential dl corresponding to the increment h=*h(t) is 

*.(*)« f {Kt)fx(t, x(t), x'(t)) + h'(t)fx,(t, <t), x'(t))}dt 
J o 

= h(t)f*(tt x(f)9 x'(t) 
*=i 

+J". , ,<B{-s''+4 _ - . - ... àt. 

This is a linear functional on £, i.e., an element of £* and the gradient 
mapping g(x) is the map which maps x—x(t) into the element l9(h) 
oîE*. 
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EXAMPLE 3. The Hammerstein scalar. Let £>, x(s), and K(s, t) 
have the same meaning as in example 1. Moreover we suppose that 
K(s, t) satisfies (3.5), is symmetric and positive definite. Finally let 
fit, u) be a continuous function defined for /££> and for — oo <u < oo. 
The Hammerstein scalar i~i(x) is then defined by 

(3.9) *(*) = — f f £(*i t)x(s)x(t)dsdt + I{x) 
2 J j} J j) 

where 

(3.10) ƒ(*)= ƒ j j * V(',")<^}< • * 

with 

(3.11) 3>00 = f K(s,t)x(s)ds. 
J D 

The significance of this scalar lies in its connection with the so-called 
nonlinear integral equation of the Hammerstein type 

(3.12) y(s) + f K(s, t)f(t, y{t))dt = 0. 

It can be shown9 that grad i(x) equals the left member of (3.12) 
(with y expressed in terms of x by means of (3.11)) if in addition to 
the above assumptions concerning K and ƒ at least one of the follow­
ing conditions (A), (B) is satisfied: 

(A) \K(s, t)\ is bounded; 
(B) \f\ is dominated by a linear function of u with coefficients 

independent of /. 
For later reference we note that if ƒ satisfies (B) and has in addi­

tion a continuous partial derivative with respect to u, and if d2(x, h,hi) 
denotes the second Fréchet differential of i{x) corresponding to the 
increments h = h(t) and hi = hi(t), then 

d2(x, h,h)=—f f K(s, t)h(s)h{t)dsdt 
2 J D J D 

(3.13) 
+ ƒ ƒ df/du(t, y(t))lf K(s,t)h(s)ds\ dt, 

where again y{t) is given by (3.11) [26, equation (7.24)]. 
9 [25, Theorem 3.1]. See [25] also for a more precise definition of the Hammer­

stein scalar; in the terminology of §7 of the present paper the Hammerstein scalar 
should be defined in the extension Ei of E. 
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4. The existence of an extremum. The examples of the previous 
section will make clear the role of gradients in the treatment of 
boundary value problems or integral equations: if the scalar i(x) 
has an extremum in an interior point of the solid sphere V— VR 
given by ||x|| ^ i ? of the Banach space E, then 

(4.1) grad i = g(%) = 0; 

if x is an extremum point on the boundary S — SR of VR, then it is 
easy to see (at least in the case that £ is a Hubert space) that for 
some X 

(4.2) g(x) + \ * = 0. 

The "variational" method of finding solutions of (4.1) and (4.2) 
consists in finding extrema of i(x). In a finite-dimensional space i(x) 
reaches a maximum and minimum in every bounded closed set if i(x) 
is continuous, and at least a minimum if i(x) is lower semicontinuous. 
As is well known, these statements are no more true in function 
spaces. If, for example, E is the Hubert space of points x = (xi, x2i • • •) 
with 5 2 £ i x^ < oo, and Xi, X2, • • • a sequence of positive nonincreas-
ing constants converging to zero, then the scalar 

(4.3) ƒ(*) - I>,tf,2 

is continuous and positive on the unit sphere Si given by ||x|| = 1 . On 
the other hand the greatest lower bound of I(x) on Si is 0, as is seen 
easily by considering the sequence of points xn on Si whose coordinates 
are all 0 except for the nth, which is 1. Thus I(x) has no minimum on 
Si. 

This situation is due to the fact that a closed bounded set in E is 
not necessarily compact. However, it follows from a well known theo­
rem of Alaoglu [ l ] tha t the solid sphere V is compact in the "weak 
topology" if E is reflexive,10 where the weak topology is the one in­
duced by the following neighborhood definition: let K be a number 
greater than R; then a neighborhood of a point Xo of VK is determined 
by a positive number e and a finite number of continuous linear f unc-
tionals k(x) (i = l, 2, • • -, n) and consists of all points x of VK for 
which 

\k(x) — /t(#o)| < «for i = 1, 2, • • • n. 

10 For the definition of a reflexive Banch space, see [14, p. 22]. Any Hubert space 
is reflexive. More generally any uniformly convex space is reflexive; see [19]• 
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As a consequence the scalar I(x) takes a maximum and a mini­
mum in VR if it is weakly continuous (that is, continuous in the weak 
topology) and it takes a minimum in VR if it is weakly lower semi-
continuous. It follows that for any integer n 

(4.4) *(*)« Ml*+ '(*). 
with weakly continuous I(x), takes a minimum in V since ||#||n is 
weakly lower semicontinuous [24, §2]. 

If I(x) in addition to being weakly continuous is homogeneous, 
that is, if for some non-negative p 

(4.5) I(ax) - a*I(x), 

statements about the existence of extrema on the boundary SR of V 
can be made. If, for example, I(x) takes positive values at all in VR, 
it takes a positive maximum in VR. It then follows easily from (4.5) 
that this positive maximum must be taken on SR, and consideration 
of — I(x) shows that in any case an extremum is taken on SR. Thus 
the scalar (4.3) takes the maximum Xi in the point 

(1, 0, 0, • • • ) 

of Si, but no minimum on Si. It takes its minimum 0 in Vi in the 
center 0 of this solid sphere. 

5. Weak continuity of I(x) and complete continuity of grad I(x). 
The next task is to find sufficient conditions for the weak continuity 
of I(x). In this respect the following theorem holds in any Banach 
space E [24, Theorem 3.2]: sufficient for the weak continuity of 
I(x) is the complete continuity of the gradient map G(x) (that is, 
that G(x) is continuous, and that the image of V under G is a com­
pact set of E; compare the definition of a gradient map in §2). 
More explicitly: if G(x) is completely continuous, then there exists to 
a given positive rj linear continuous functionals h, k, • • • , ln and an 
€>0 such that | I(x+h) —I(x)| <t\ for all h with x+h£. VK for which 
\h{h)\ <e (i = l, 2, • • • , n) where VK has the same meaning as in 
§4. Under the same assumption for complete continuity of G it is 
also true that to given rj > 0 there exist linear continuous functionals 
/*• (i = l, • • • , n) such that 

\l(x + h)- I(x)\ < 1*11*11/2 if ||fc(*)|| < i?||*||/2 (* - 1, 2, . . • , n). 

If E is a Hilbert space, the converse of the last statement holds 
[24, Theorem 3.3]. 

As a special application we draw the conclusion that the scalar 
(3.1) is weakly continuous if the operator A(x) is completely con-
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tinuous.11 Since this scalar is homogeneous (the p of (4.5) being 2), 
it follows from the previous section that this scalar reaches an ex-
tremum on the surface of the unit sphere. This is especially true of 
the double integral (3.4) (under the assumption (3.5)), a well known 
fact which is basic for the variational treatment of the theory of 
linear integral equations.12 

6. Extension of the domain of applicability of the preceding theory. 
The application of the preceding theory seems to be confined to those 
scalars which have a completely continuous gradient, and therefore 
to have no bearing, for example, on problems connected with the dif­
ferential operator A defined by (3.6); for (3.7) is not completely 
continuous quite apart from the fact already pointed out in example 
l a that this operator is not the gradient of the scalar (3.8) in the sense 
of the definition given in §2. 

However, it is sometimes possible by introducing a new "inde­
pendent variable * and a new norm13 to make the gradient completely 
continuous and therefore the corresponding scalar weakly continu­
ous. We illustrate this procedure for the operator A defined by (3.6). 
I t is well known that , under certain conditions concerning the dif­
ferentiability of p and of the boundary of the bounded domain D, 
there exists a Green's function K(s, t) belonging to the operator B 
defined in (3.7) and the boundary conditions zero.14 For every con­
tinuously differentiable function the unique solution of the boundary 
value problem 

11 That the complete continuity of the linear operator A (x) is a necessary and suffi­
cient condition for the weak continuity of the scalar (3.1) was already recognized by 
F. Riesz [20, pp. 96-97, footnote]. As regards the terminology, it should be noted 
that Riesz (following Hubert) calls the quadratic form (A (#), x) completely continu­
ous if it is weakly continuous in the sense explained in §4 of the present paper. The 
terminology which calls a nonlinear (not necessarily quadratic) scalar in Hubert 
space completely rather than weakly continuous if its gradient is completely continu­
ous is still used in [22, Definition 5.1 and Theorem 5.1 ] and in [23]. A scalar which is 
completely continuous in the sense of this latter definition is actually weakly con­
tinuous (as noticed by the referee of [23]; compare Lemma 2.1 of that paper). The 
connection between weak continuity of a scalar and the complete continuity of its 
gradient has also been noticed by E. S. Citlanadze in the Hubert space case [5, 
Theorem 2] and in the case of a reflexive Banach space with basis in [ö]. 

12 See, for example, [7, vol. 1, chap. 3]. 
13 The method of renorming a Hubert space E (or subspace of E) was introduced 

and applied to the treatment of second order boundary value problems by K. Fried-
richs [8]. For higher order problems, compare [3, §10]. For "introducing a new 
variable," see also [12, p. 68]. 

14 Schauder [29, p. 279] showed that the use of the Green's function is not neces­
sary for the method in question. 
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(6.1) B{y) = x, y = 0 on the boundary of D9 

is then given by (3.11) for which we write shortly 

(6.2) y - * ( * ) . 

Moreover, if E is the Hubert space of all functions x(t) for which 

(6.3) f x\t)dt 
J D 

exists with the square root of this integral as norm, then (6.2) repre­
sents a completely continuous linear map of E into itself mapping x 
into y. 

We now introduce x as a "new variable" instead of y in the oper­
ator A and obtain from (3.6), (6.1), and (6.2) (at least for a certain 
subspace of JE) 

(6.4) A(y) = x + K(x). 

We now renorm our space as follows: with the scalar product cor­
responding to the norm given by (6.3), we have from (6.1), (6.2), 
(3.7), and Green's formula 

(*, K(x)) - (B(y), y)= f p£, {ày/dsv)Hs > 0. 

We therefore can define a norm ||x|| given by 

(6.5) y » - ( * , *:(*)) 

instead of (6.3). K(x) is defined for all x in £. However, E is not 
necessarily complete in the new norm given by (6.5). But E can be 
completed.15 We denote the completed space with the new norm by 
Ei. If we denote the scalar product corresponding to the new norm 
\\x\\ by square brackets such that ||x||2= [x, x], we obtain from (6.4) 
and (6.2) for the scalar (3.8), which we now denote by i(x), 

2i(y) - (A(y)9 y) - (*, *(*)) + (*(*), K(x)) 

-Ml*+[*.*(*)]. 
Now K(x) is completely continuous in the norm given by (6.3), and 
it can be seen easily that it remains completely continuous in the new 
norm ||#||. Consequently, the scalar /(#) defined by 

(6.7) I(x) - [*, K(x)]/2 
u Concerning the completion of E, see [8]. For a more concrete method applicable 

if the eigenfunctions of the positive definite kernel are known, see [25]. 
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is weakly continuous by the last paragraph of §5, and the scalar (3.8) 
is by (6.6) of the form (4.4) that is, 

(6.8) *(*) = |MI2 + H*) 
with weakly continuous I, and it takes, therefore, a minimum in 
every sphere ||#|| SR while the scalar (6.7) takes not only a minimum 
in such a sphere but also a maximum on its boundary ||x|| =i? (com­
pare the last paragraph of §4).16 

7. Application to the Hammerstein integral equation. The method 
illustrated in the previous section in the case of the linear operator A 
can also be applied to nonlinear problems. We shall illustrate this for 
the nonlinear integral equation (3.12) with the symmetric positive 
definite kernel K(s, t) satisfying the assumptions made in §3, ex­
ample 3. We define the spaces E and E\ as in §6 with K now being the 
kernel of (3.12).17 From (6.5) the Hammerstein scalar i(x) defined by 
(3.9), (3.10) can then be written 

Ml2 
(7.i) m-llf-+i(x), 

where I(x) is defined by (3.10), (3.11) with continuous/. Then, as 
has been mentioned already in §3, either of the conditions (A), (B) 
(§3, example 3) is sufficient for the left member of (3.12) (expressed 
by means of (3.11) in terms of x) to be equal to grad i(x). It can also 
be proved that either of these conditions is sufficient for 

grad I(x) « f K(s, t)f(t, y{t))dt 
J D 

to be completely continuous [25, Theorem 3.2]. Thus, the Hammer­
stein scalar (7.1) has the same properties as (4.4) and therefore 
reaches a minimum in any solid sphere VR of E\. If the minimum is 
taken in an interior point Xo of VR, the grad i will be zero in Xo, 
that is, the y connected with x~xo by (3.11) will be a solution of 
(3.12). The minimum point XQ will certainly, at least for large enough 
R, be an interior point of VR if i(x)—•» as ||#|| —»*>. Now it can be 
shown that this latter condition is satisfied if 

16 The point (or points) x in which the extremum is attained is in JSi but not neces­
sarily in £ . For the applications it is therefore of importance to extend the operator 
(6.2) from E to Ei in such a way that y is in the original function space. Compare 
the following footnote. 

17 For a more precise description of the linear operator (6.2) (that is, (3.11)) in 
the extended space E\, see [25, §§2 and 3]. 
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(7.2) f "ƒ(*. u)du > - k/2y* - C, 
J o 

where C and ft are constants, the latter subject to the condition 
O g £ < l / X i with Xi being the greatest eigenvalue of the kernel K. 
Thus, the conditions of this section taken together (with either A or 
B) are sufficient for the existence of a solution of the Hammerstein 
equation (3.12).18 

8. Critical points and Leray-Schauder index. So far the existence 
theorems for boundary value or integral equation problems which 
can be written in form (4.1) have been based on the proof that the 
corresponding scalar i(x) has a maximum or minimum. However, 
maxima or minima are rather special types of critical points, i.e., 
of points x satisfying (4.1). Let XQ be a point which is not a limit of 
critical points. Then a sufficient condition for x0 to be a critical point 
is that a t least one of the (Morse)-type numbers at XQ are different 
from zero. These numbers are defined as follows:19 let U be a neigh­
borhood of XQ containing no critical point except possibly XQ. Let C 
be the intersection of U with the set of those x for which i(x) ^>i(xo), 
and C the set C minus the point xo] the rth type number mT of i(x) 
at #o is then defined as the singular rth relative Betti number of 
C mod C (r = 0, 1, • • • )• I*1 what follows we shall always assume 
tha t E is a Hubert space, and that g(x) =grad i(x) is of the form 

(8.1) g(x) = x/2+G(x) 

with completely continuous G. By the result mentioned at the begin­
ning of §5, i(x) is then of the form (4.4) with w = 2 and weakly con­
tinuous I{x) encountered several times in our examples. Now for 
mappings of the form (8.1) the mapping degree is defined. More pre­
cisely: if D is any open bounded convex domain in E, and if y is a 
point of E which does not lie on the boundary of the image of D 
under g, then the degree j=j(D, g, y) of the map g: D—>E a t y is 
defined [16]. Therefore, especially j—j(gf U1 0) is defined where 0 
denotes the zero point of E, and U is any neighborhood of the point 

18 This is one of the principal results of Hammerstein's paper [13]. Since then 
more general results concerning existence and uniqueness of solutions of equation 
(3.12) and systems of such equations have been obtained by M. Golomb in [9] and 
[lO] without the assumption of positive définiteness and of symmetry. See also 
[21, §5]. The method described in the present paper can also be used to obtain 
generalizations (in a somewhat different direction) pertaining to not necessarily posi­
tive and symmetric kernels; see [25] and [26, §7]. 

"See [18] or [31]. 
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XQ of E having the property described above. This number (which 
can be shown to be the same for all such neighborhoods U) is called 
the (Leray-Schauder) index of g a t xQ. I t plays the role of the "multi­
plicity" of xo as root of the equation (4.1). In particular, jy^O is a suffi­
cient condition that Xo is a solution of (4.1), that is, a critical point. 
In the latter case, j is also called the index of the singularity Xo of the 
"vector field" g(x). Under certain conditions the following relation20 

holds between the index j and the type numbers mr: 

(8.2) i = Z ( - l ) r > » ' . 
r 

Now let V= VR be the solid sphere ||#|| SR of the Hilbert space £ , 
and S — SR its boundary. I t follows easily from the complete con­
tinuity of G{x) that there are at most a finite number of critical points 
of the scalar i(x) in VR. We denote these by aff (o- = l, 2, • • • , s), 
the index of g a t a„ by j99 and the rth type number of i(x) a t av by 
mr

a. We suppose tha t none of the critical points aff lies on SR. Then 
under the mapping g the zero point 0 of £ is not on the image of the 
boundary SR of VR, and therefore the mapping degree x^dÇg, VR, 0) 
is defined. This number is known to depend only on the behavior of 
g on SR, and it is therefore also called the order of the image (under g) 
of SR with respect to 0, or also the characteristic of the gradient field 
g(x) on SR.21 If we now apply (8.2) to each a9 and sum in cr, we obtain 
immediately the relation 

(8.3) X - Z E H W 

by applying the well known fact [21, Satz 5] that x— ]Ct- i j*-
To show that this formula sometimes yields information about 

the number of critical points, we consider the case that the differen­
tial L(x, h) of G(x) exists, is completely continuous in h, and that 
moreover the second differential d2(x, h, k) of i(x) is uniformly posi­
tive definite, that is, that there exists a positive constant JX such that 

(8.4) d2(x, k, k) S M N I 2 . 

20 For the proof in the finite-dimensional case, see [27]. While this seems to be 
the only published proof, the formula in this case was known independently to 
R. Bott and to M. Morse. For the proof in the Hilbert space case, see [28]. 

We remark (as R. Bott also did) that the well known theorem of Bendixson, ac­
cording to which the index of an isolated singularity of a plane gradient field is 
never greater than 1, is a nearly immediate consequence of (8.2). 

21 For the concepts of order and characteristic, see [2, chap. 12] in the finite-
dimensional case, and [2l] for the Hilbert space case. 
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We claim that in this case VR (for large enough R) contains exactly 
one critical point, and that this critical point is a minimum [26, 
Theorem 6.2]. 

Indeed, that every eventual critical point aff of VR is a minimum, 
and tha t m° = l , m£ = 0 for r è l follows immediately from (8.4). The 
relation (8.3) therefore specializes to 

A o 
(8.5) X = z-r^t 

and since m°a ^ 1 it will be sufficient to prove that 

(8.6) x = 1, 

for then (8.5) implies 5 = 1. To prove (8.6) we remark that since 
d2(x, h, k) is the differential of the first differential d(x, h) of i(x), we 
obtain from the mean value theorem [ l l , Theorem 5]. 

d(x, k) — d(0f k) = I d2(tx, x, h)dt, 
Jo 

and therefore from (8.4), with k—x, 

(8.7) d(x, x) = M M I 2 - l<*(°> * ) | 
-INIWNI-|rf(o.*)l/INIÎ. 

Recalling that , by the definition of a gradient in a Hubert space E 
(last paragraph of §2), d(x, x)—(g(x)t x), we see immediately from 
(8.7) that to each large enough R there exists a positive jUi=Mi(^) 
such that (g(x), x)^R2fii(R)>0 for x on SR, But this inequality 
means that the vector field g{x) on SR is "exteriorly directed." There­
fore its characteristic x on 5 is + 1 [21, part b of Satz 7]. 

As an application, we remark that the Hammerstein scalar (§3) 
is uniformly positive definite if, in addition to B and the assump­
tions made in §7, it satisfies the following condition: ƒ has a first 
continuous derivative with respect to u satisfying the inequality 
(5//dw) = —c where the constant c is subject to the condition that 
cr1 is greater than the greatest eigenvalue of the kernel K(s, t). This 
implication follows easily from (3.13).22 Consequently, the Hammer­
stein equation (3.12) has one and only one solution in this case.23 

Moreover, it follows from (3.12) that x(s) = —f(s, y(s)) satisfies (3.11). 
Consequently, this x(s) minimizes the Hammerstein scalar. 

22 For details, see [26, §7]. 
23 Concerning more general uniqueness statements, see the papers quoted in foot­

note 18. 
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