
BOUNDED ANALYTIC FUNCTIONS 

ZEEV NEHARI 

If D is a domain in the complex s-plane, then the family B=B(D) 
of bounded analytic functions in D is defined as consisting of those 
analytic functions ƒ(z) which are regular and single-valued in D and 
which satisfy the inequality \f(z) | < 1 at all points of D. The classical 
investigations of the family B(D) were restricted to the case in which 
D is a simply-connected domain. In fact, D was generally taken to be 
the interior of the unit circle, a restriction which is apparent rather 
than real since most properties of bounded functions are either in­
variant with respect to a conformai mapping of D, or else are trans­
formed in a simple manner. The use of the simple properties of the 
unit circle led to a large number of results which are distinguished 
both by their elegance and their preciseness. However, since the 
proofs leading to these results lean heavily on the special features 
of the unit circle, they gave little or no indication as to their possible 
generalization to the case of bounded functions in multiply-con­
nected domains. 

In the classical treatment of bounded functions, the family B was 
occasionally replaced by the more general class of analytic functions 
w=f(z) whose values—for JS£Z)—are contained in a specified simply-
connected domain D' in the w-plane. The family B corresponds to 
the case in which ID' is the unit circle |w | < 1 . Other special cases 
are the family of functions with a positive real part—to be denoted 
by P = P(D)~obtained if D' is the right half-plane Re \w) > 0 , and 
the family of functions with a bounded real part—denoted by 
BR = BR(D)— for which D' is the infinite strip - K R e [w] < 1 . 
These families are obtained from B by means of the conformai trans­
formations which carry \w\ < 1 into the various domains D'. For 
instance, we have 

1 + ƒ(*) 
(i) *w = i I > ƒ(*) e B, g(z) e P, 

4 
(2) d>(z) = — arc tan ƒ(*), ƒ(*) G B, 4>{z) G BR. 

IT 

Apart from their intrinsic interest, these classes are often useful in 
the investigation of the functions of B since the special features of 
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the classes P and BR make it possible to use certain simple yet power­
ful techniques whose adaptation to the class B would be a matter of 
considerable difficulty. 

The novel features encountered in the at tempt to generalize the 
classical results on bounded functions to the case of multiply-con­
nected domains are due to the failure of the monodromy theorem. 
We are therefore faced by two different types of problems, according 
as we consider the family of all functions which are regular and 
bounded in D, or confine ourselves to those functions which are, in 
addition, single-valued in D. The first case introduces no new fea­
tures since, by considering the function on the universal covering 
surface of D, we may reduce it to the simply-connected case. In the 
case of single-valued functions, however, this device is obviously 
unable to yield precise results, and different methods have to be 
used. 

The first to consider problems of this kind seem to have been 
Carlson [5]1 and Teichmüller [20 ] who obtained a sharpened version 
of Hadamard's three circle theorem for functions which are single-
valued in a circular ring, and Heins [ l l ] who considered a number of 
extremal problems for functions regular and single-valued in a 
doubly-connected domain. The case of bounded functions in domains 
of arbitrary finite connectivity was first treated by Grunsky [9, 10 ], 
who considered generalizations of the lemmas of Schwarz, Julia, 
and Loewner. The extension of Schwarz' lemma aimed at by Grunsky 
consists in the following problem : Given a domain D of connectivity 
n and two distinct points—say £" and ZQ—of P , to find a function 
fo(z) of B(D) such tha t f0(Ç) = 0 and | / 0o ) | ^ |/o(zo)|, where f(z) is 
any other function of B(D) which vanishes at f. The existence of 
such a function f0(z) follows, of course, from the compactness of the 
family B(D). Grunsky showed [lO] that the extremal function 
w=fo(z) yields a conformai mapping of D onto the w-times covered 
unit circle \w\ < 1 . 

The existence of such mappings had been conjectured by Riemann 
and it was proved later [4, 8] that there exist a large variety of 
essentially different conformai mappings of a domain of connectivity 
n onto the w-times covered unit circle, where m^n. In [lO] it is 
shown that any function of B can be approximated by functions 
mapping D onto the multiply-covered unit circle and that it is there­
fore sufficient to consider functions of this latter type. The solution of 
the problem |/(zo)| =max , /(f) = 0 among these functions is then 
shown to have not more than n — 1 zeros in D other than £", and this 

1 Numbers in brackets refer to the references cited at the end of the paper. 
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is equivalent to the characterization of the function fo(z) given 
above. 

The fact that the extremal function yields a (1, n) mapping of D 
onto the unit circle is not sufficient to characterize the extremal func­
tion completely, since there exist an infinity of essentially different 
mappings of this type. The problem thus remains of characterizing 
the extremal mapping within this class. This problem was solved by 
Ahlfors [ l ] , who considered a generalization of the Schwarz lemma 
slightly different from the one mentioned above, namely, the prob­
lem: f(z)EB(D), CED, | ƒ (f) | =max. Ahlfors shows that the ex­
tremal function F(z) yields a (1, n) mapping of D onto the unit circle 
and that the zeros £, Zi, z2, • • • , zn-i of F(z) in D are distinguished 
by the fact that there exists a differential p'(z)dz such that 

1 
(3) — p'(z)dz > 0, zEC 

i 
(C being the boundary of £>), where pf(z) is regular in D except for 
a simple pole of residue 1 at f and Si, • • • , zn-i are the n — 1 zeros 
of p'(z) in D (the fact that a function p'(z) with one pole in D and 
with the boundary behavior (3) has precisely n — 1 zeros in D is 
an immediate consequence of the argument principle). We remark 
that in the case in which the boundary C of D consists of n closed 
analytic curves—and it is sufficient to consider this case—it follows 
from (3) and the Schwarz reflection principle that pr(z) is regular on 
C. 

The proof of this property of the extremal is based on the observa­
tion that the function log | F(z) | is—apart from a number of loga­
rithmic poles—a harmonic function in D whose harmonic conjugate 
has periods about the boundary components of D which are integral 
multiples of 2ir. By slight variations of the locations of the logarithmic 
poles—which amounts to adding and subtracting Greene functions 
of D with suitable points of reference—and by variations of the 
boundary values of log | J F ( S ) | , a function log | ,F*(JS)| is obtained. 
In order to insure that F*(z) is also single-valued in D and is thus a 
competing function in the original problem, it is necessary to carry 
the condition that the periods of the harmonic conjugate of log | F(z) \ 
remain unchanged in these variations. This is achieved by a Lagrange 
multiplier technique, which finally leads to the above result. In a 
more recent paper [2], Ahlfors shows that a similar procedure can 
be applied to bounded functions on an open Riemann surface of genus 
higher than zero, and that it leads to similar results. The extremal 
map is again a covering surface of the unit circle; if p is the genus 
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of the surface and n is the number of its boundary components, then 
the number m of the sheets of the extremal map satisfies n^m^n 
+ 2p. 

The investigation of the extremal problem f(z)ÇzB(D), \f'($)\ 
= max was carried further by Garabedian [ó] who showed that there 
exists an interesting connection between this problem and the 
problem 

(4) 
/

| h(z) | ds = min, 
c 

where h(z) is regular in D except for a double pole at f with the 
principal part (2 —f)~2, and where the boundary behavior of h(z) is 
such that the integral in (4) exists. To see this, consider the function 
q(z) defined by 

(5) q(z) = 
F(z) 

where F(z) is Ahlfors' extremal function and p'{z) is the function 
appearing in (3). Since the n — 1 zeros of p\z) coincide with the zeros 
of F(z) other than £ = f, q(z) has no zeros and is regular in D except 
for a double pole at 2 = f. It follows from (3) and (5) that the boundary 
relation 

(6) -iF(z)q(z)dz > 0, z G C, 

holds. The principal part of q(z) at 3 = f is (z — f)~2. Indeed, if there 
were a term of the form a(z — f)"1 , it would follow from (6) and the 
fact that I F(z) \ = 1 on C that2 

= 4" f «GO* - ~ ( [F(z)]*F(z)q(z)dz 
1 J c l J G 

= y[JF\z)q(z)dz'j , 

and this vanishes since, in view of F(Ç) =0 , the integrand is regular 
in D. 

The fact tha t F(z) is the extremal function of the generalized 
Schwarz lemma and that q{z) solves the problem (4) was deduced by 
Garabedian from (6) in the following elegant manner. If f(z) is a 
function of B(D), it follows from the residue theorem and the in­
equality (6) that 

2 Complex conjugates are denoted by asterisks. 
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(7) 

I /'GO | = |-^ (f(z)q(z)dz\ =g f f I g(*)&| 
I ATI J C I 7̂T J C 

= T" f |4-*(*)«(*)<fe| = ^ f*(.*)q(*)d* = TO, 

where the fact that | F(z)\ = 1, z £ C , has been used. This shows the 
extremal property of F(z). As to the problem (4), it follows from the 
properties of the functions h(z) that 

f | h(z) \ds^\ f h(z)F(z)di 
J c I J c 

By (7), we have 

f | q(z) | ds = 2^(0, 

= 2x^(f). 

(8) 

and therefore 

f | g(«) | ds g f | *(«) I ds. 
J c J c 

Thus, q(z) solves the extremal problem (4), and the extremal values 
of (4) and of the quantity associated with the generalization of 
Schwarz' lemma are connected by the simple relation (8). 

The fact tha t our maximum problem in the theory of bounded 
functions is associated with a "dual" minimum problem of the type 
(4) is not an isolated occurrence. This duality was recognized by 
Fr. Riesz [18] in a variety of extremal problems concerned with 
bounded functions in the unit circle. In all these cases, the two asso­
ciated extremal functions form a positive differential in the manner of 
(6), and their extremal properties follow from the positivity of the 
differential by judicious use of the residue theorem. In the case of the 
unit circle, the existence of pairs of functions with suitable proper­
ties which form positive differentials is trivial and they can easily be 
written down explicitly in terms of elementary functions. In the case 
of general multiply-connected domains D this is not true any more 
and the relevant existence theorems appear to lie somewhat deeper 
than the existence theorems for the usual harmonic and analytic 
domain functions of D. A direct, but rather difficult, proof for the 
existence of two functions F(z) and q(z) which are connected by (6) 
and have the other properties specified above was given by Gara-
bedian and Schiffer [7]. A short proof which, however, uses the 
existence of the Green's function of D can be found in [15]. 



*9S^ BOUNDED ANALYTIC FUNCTIONS 359 

Another important aspect of the problem f(z)ÇzB(D), |ƒ'(£*)( 
= max is the connection between the extremal F(z) and the Szegö 
kernel function [19] established in [ó]. I t is not difficult to show that 
the function q(z) in (6) can be written in the form q(z) =47r2L2(3, f), 
where L(z, f) is regular and single-valued in D-\-C except for a 
simple pole of residue (27r)_;l a t z = f. If we denote the regular function 
F(z)L(z, f ) 'by K(z, Ç), that is, we write 

K(zt f ) 
(9) F ( s ) « 

L(z, f) 

we can deduce from (6) that K(zt f ) and L(z, f ) are connected by the 
relation 

(10) [K(z, fi]*ds = - iL(z, fidz, z E C. 

If <f>(z) is any function which is regular and single-valued in D and 
such that 10(s) | 2 can be integrated over C, it follows from (10) and 
the residue theorem that 

f [K(z, ?)]*4>(z)ds - — f Hz, f)*(s)<fe = *(f). 
*/ c t J c 

The function jf(s, f) has therefore the characteristic reproducing 
property 

<KD = f [K(z, ?)]*4>(z)ds 
J c 

of the Szegö kernel function [19] of D and is thus identical with it. 
Since, by (9), 

(ii) n r ) = 2Tjc(r, r), 
and since kernel functions can be numerically computed in terms of 
complete orthonormal sets of functions [3], (11) yields the complete 
numerical solution of the problem f(z)£B(D), \f(Ç)\ =max. 

As pointed out above, it is useful to consider also functions of the 
classes P and BR, which are related to the functions of B by the equa­
tions (1) and (2), respectively. The special properties of these classes 
make it possible to devise methods for the solution of extremal prob­
lems which are considerably simpler than those required for a direct 
attack on the class B [14, 17]. To illustrate the method appropriate 
for problems within the class P [14], we consider the extremal prob­
lem g(z)Ç£P, g (f) = 1, I g'(f) I =max which is identical with the gen­
eralization of Schwarz' lemma discussed further above. From a 
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trivial transformation it follows that it is sufficient to consider the 
problem g'(Ç) =max within the subclass of functions of P for which 
g ' ( D > 0 . Let now —ir'(z)dz be a non-negative differential on C, 
that is, 

(12) - * / ( * ) & S O , z £ C , 

where r'{z) is regular and single-valued in D (and, by the reflection 
principle, also on C) except at s = f where 

(13) r>{z) = - — i — + -?— + ri(z) 
{Z - f ) 2 S - £ 

and ri(z) is regular. In view of (12), a is necessarily positive. If g{z) 
is a function of P which is integrable over C, it follows from (12), 
(13), and the residue theorem that 

Re {a - ^ ( r )} = Re { ^ ƒ *(*)'<«)&} 

= —; f Re jj(«))f(«)&è0, 

where the fact that Re {g(s)| ^ 0 has been used. Since both a and 
g'(f) are positive we find that 

(14) £'(f) ^ a. 

In order to obtain the best estimate of this type, we have to use the 
function (13) for which ce = min under the condition (12). This mini­
mum problem presents no difficulties since the positive differentials 
(12) form an ^-parameter family which can be expressed in terms of 
the Green's function and the harmonic measures of D. It is found that 
the minimizing differential is characterized by the fact that the asso­
ciated function r'(z) has a double zero—say zv—on each boundary 
component Cv (*> = 1, • • • , n) of D. For the a belonging to this dif­
ferential, the inequality (14) will then be sharp, and the extremal 
w = G(z) of our original problem will necessarily yield a (1, n) map­
ping of D onto the right half-plane Re {w} > 0 . Indeed, as shown in 
[4, 8] , there exists a completely determined mapping w—f(z) of D 
onto the n-times covered unit circle such t ha t / ( f ) =0 , f'(Ç)>0, and 
f(zv) = 1,J> = 1, - • - , n> where zvÇzCv. Passing to the class P by means 
of (1), we obtain a function w = G(z) which yields a (1, n) mapping 
of D onto Re {w} > 0 and whose only singularities on C are simple 
poles at the points zv. Since these are the zeros of the minimizing 
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differential r'(z), we may evaluate the integral 

— ; Ç G(z)r'{z)dz 
2iri J c 

by the residue theorem. In view of (12), (13), and the fact that 
Re {G(JS)} = 0 for 2GC, Z9^zvy we obtain a —G'G*)=0, which shows 
that (14) is sharp and that G(z) solves our problem. 

By using positive differentials which show a singular behavior dif­
ferent from that indicated in (13), it is possible to solve a large 
variety of extremal problems within the family P. In all these cases, 
the extremal functions yield mappings of D onto covering surfaces 
of the right half-plane [14]. I t is interesting to note that while the 
extremal function of the Schwarz lemma is essentially unique, there 
will be no uniqueness in the case of those problems whose associated 
positive differentials have more than two poles in D. 

In the case of the class BR, that is, the class of the functions <f>(z) 
which are regular and single-valued in D and satisfy | Re {<t>(z)} \ < 1, 
different methods are indicated [17]. If we write <f>(z) — u(z)+iv(z)> 
where u{z) and v{z) are real, we are dealing with those harmonic func­
tions u(z) which satisfy | u(z) | < 1 in D and which possess a single-
valued harmonic conjugate. The latter condition is equivalent to 
the n — 1 conditions 

/

* do)v(z) 
u(z) ds = 0, v = 1, • • • , n — 1, 

c dn 
where o)v(z) is the harmonic measure associated with Cv, that is, o)v(z) 
is harmonic in D and has the boundary values hvli on CM. To illustrate 
the method of [17] by a simple example, we consider the problem 
0(f) ==0> I ^ M l =niax (f, r\Ç.D, f^ry) which is equivalent to the 
generalization of Schwarz' lemma treated in [ l0] . From trivial trans­
formations it follows that it is sufficient to consider the problem u(Ç) 
= 0, u(rj) =max. Using Green's formula and taking into account the 
conditions (15), we have 

<v) = ~ —I «(*) — + «— 
2w J c L on on 

(16) 
+ X ) *' —-— <fc» 

„=1 dn J 
where g{z, rj) is the Green's function of D and a and the X„ are arbi­
trary real parameters. Since \u(z)\ rgl, it follows from (15) that 
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( « ) 

,w â hl 
2w J c 

h ÛJ • h L ^ 
c i dn dn „=1 d^ 

ds 

P\ds, 

where P is an abbreviation for 

(18) 
n dg(z, rj) dg(z, f) »=i ôu,(s) 
P = — + a-— + 2 . X,— 

on on V s=i aw 
zee. 

To obtain the best possible inequality (17), we minimize the right-
hand side of (17) with respect to the arbitrary parameters ce, Xi, • • • , 
Xn_i. This leads to the conditions 

r n àg{z, » 
• S g n p ds — 0, 

J c dn 

X 
ÔW„(z) 

sgn P ds = 0, 
c 3w 

* • = 1 , 1, 

where sgn P is equal to 1 or — 1, according as P is positive or nega­
tive, and remains undetermined if P — 0. If we introduce a harmonic 
function V(z) by the Dirichlet problem 

(19) U(z) - - sgn i>, 2 G C, P 5* 0, | U(z) | g 1, « G A 

these conditions read 

3«(*. f) 
(20) 

(21) 

f tf CO 

ƒ• do)Jz) 
I tf(s) — Js 

J c dn 

ds = 0, 

0, i> = 1, • • • , n — 1. 

(20) shows that (7(f) = 0 , while a comparison of (21) and (IS) shows 
that the harmonic conjugate V(z) of U(z) is single-valued in D. The 
analytic function <j>(z) = U(z)+iV(z) thus belongs to BR. From (19) 
and the easily demonstrable fact that an expression of the type 
(18) cannot have more than 2n zeros on C, it further follows that 
w=</>(z) yields a (1, n) mapping of D onto the infinite strip — 1 
< R e {w\ < 1 . The function <j>{z) solves our extremal problem. In­
deed, we have [7(f) = 0 and, in view of (17), (19), and (18), 

u(rf) ^ — f \p\ds = f U(z)Pds = U(n)-
2w J c 2x J c 

file:///p/ds
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This method is easily extended to the case in which the class BR 
is restricted by various types of side conditions. As an example, we 
mention the problem: (/)(Z)ÇZBR, </>(aM)=&M, fi = l, • • • , ra, |$ (?) | 
= max where we have to require, of course, that there exist at least 
one function of BR which satisfies the given interpolation conditions. 
The extremal is found to yield a (1, A?) mapping of D onto the strip 
— l < R e \w) < 1 , where n^k^n+tn — 1. This result, which repre­
sents a generalization of the well known Pick-Nevanlinna interpola­
tion theory, was first proved—by different methods—by Garabedian 
[ó]. Another derivation, based on a lemma on positive harmonic 
functions, has recently been given by Heins [12]. 

By suitable modifications of the basic method of proof in [17], a 
large number of extremal problems in the class BR and in related 
classes can be treated. For instance, if <j>(z) (E.BR, <£'(£* ) — A is given and 
77 is such that <t>'(rj) cannot vanish, then the problem | $'(??) | =min is 
solved by a function mapping D onto the m-times covered strip 
— K R e {w} <l, where n^m^n+2. A similar result is obtained if 
the condition |#'(rç)| =min is replaced by \<t>{u)—<j>(v)\ =min, where 
the points u and v are such that <j>(u) and <j>{v) cannot coincide if 
<£'(f) —A. From the last two results it is not difficult to deduce a re­
sult concerning the radius of univalence about a given point f of those 
f unctions ƒ (z) of B for which | / ' ( f ) | ^A, where A is a given positive 
number. It is found that, among the functions satisfying these condi­
tions, the smallest radius of univalence is obtained for a function 
mapping D onto the w-times covered unit circle, where n^m^n + 2. 
This generalizes a classical result of Landau [13] for the case n — \% 

in which m = 2. 
The class B can be generalized in a number of ways. One general­

ization is obtained by replacing the condition \f(z)\ < 1 , zÇiD, by 
lim sup2-»2o \f(z)\ ^X(^o), where X(so) is a positive continuous func­
tion on each boundary component of D and z approaches the 
boundary point Zo from inside D [16]. The discussion of the problem 
\f(£) | =max in this class of functions leads to two domain functions 
K\(zt f ) and L\(z, f ) which generalize the functions K(z, f) and L(z, f) 
associated with the analogous problem in the class B. K\(z, f) is 
regular in D, L\(z, f ) is regular in D except for a simple pole of residue 
(2T)~1 at s = f, and on the boundary we have the identity 

(22) [K&, f)]*& = - ik(z)L(z, f)dz, z G C, 

which generalizes (10). The maximal value of | / ' ( f ) | is given by 
2irK\(Ç, f). If g(z) is regular and single-valued in D and \g(z)\ is 
square-integrable on C, it follows from (22) and the residue theorem 
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that 

" >rKz)g(z)[Kx(z, t)]*ds - g(.t). £> 
This shows that K\(z, £*) is a kernel function which can be computed 
by the expansion 

*x(*,r) = £*(*)[*,«•)]* 
v—1 

where the gv(z) are a complete set of functions with the same prop-
perties as g(z) which are orthonormalized by the conditions 

Ç \-l(z)gv(z)[gv(z)}*ds = bv». 
J c 

Another generalization of the class B is obtained by extending B 
to include, in addition to bounded analytic functions, also bounded 
complex harmonic functions which are not necessarily analytic. This 
class, say B', will thus consist of functions of the form f(z)-+-g*(z), 
where f(z) is analytic and g*(z) is the complex conjugate of an 
analytic function, such that 

(23) | ƒ(*) + «*(*) | < 1, 2 £ D , 

Both f(z) and g(z) are supposed single-valued in D. 
The treatment of the class B' can be modelled on that of the class 

BR. T O illustrate the procedure, we consider the problem | / ' (f) 
+ [g'(f)]*| —max, ÇELD. By Green's formula, we have 

/'(f) + te'(r)]* 

(24) = - — [ƒ(«) + g*(z)] — — — + E — — <fc, 

f = I + *U, 

where the arbitrary complex constants X» take account of the fact 
that ƒ(z) and g(z) are single-valued in P . By (23), it follows that 

(25) \A!)+[g'tt)]*\£^-( \P\ds, 

where 

(26) p^^ïl+^^^1. 

file:///P/ds
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We now minimize the right-hand side of (25) with respect to the 
arbitrary complex parameters X„. This leads to the necessary condi­
tions 

exp {i arg P\ ds = 0, v — 1, • • • , n — 1. 
c an 

If we define a complex harmonic function h(z) = u(z)+iui(z) by the 
boundary value problem 

(27) h(z) = exp { - f arg P } , 2 6 C 

this condition reads 

/

' dcov # r do)y 
u ds + i I U\ ds = 0, v = 1, • • • , n — 1. 

c an J c an 
This shows that the harmonic conjugates v(z) and Vi(z) of u(z) and 
Wi(2), respectively, are single-valued. Hence, 2u(z) ~p(z)+p*(z) and 
2iui(z) = q(z) — q*(z), where the analytic functions £(z) and q(z) are 
single-valued in D. The function &(*;) defined by (27) is therefore of 
the form 

(28) *(*) = y [#w + ?wl + \ bw - ?«]* 

= *(s)+G*(a), 

where ^(2) and G(s) are regular and single-valued in D. Since, by 
(27), \h(z)\ = 1 on C and since the maximum principle is also valid 
for complex harmonic functions, it follows thus that h(z) belongs to 
B'. 

That the function h(z) solves our extremal problem is now easily 
seen. In view of (27), we have 

(29) \p\ = Ph{z)y z&C. 

Inserting this in (25), and observing (24), (26), and (28), we obtain 

I ƒ'«•)+ U'G-)]*I =§*"G-)+[G'(r)]*, 

which expresses the extremal property. As in the case of the cor­
responding problem within the class B, the extremal function is asso­
ciated with a positive differential. Since g(z, f ) and o)v(z) are constant 
on each boundary component of Dt the expression P defined in (26) 
satisfies 

Pds = — iQ(z)dz, zee, 
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where Q(z) is a single-valued analytic function which is regular in D 
except for a double pole with the meromorphic part (s — f ) - 2 . Com­
bining this with (29) and (28), we find 

- i[F{z) + G*(z)]Q(z)dz à 0, zeC, 

a boundary relation analogous to (6). 
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