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1. Introduction. In conformity with the title of this address, the 
principal objective is the consideration of topological techniques 
which have been employed in the theory of surface area initiated 
by Lebesgue [15]1 in his thesis. 

It may appear strange that topology is required at all in a disci­
pline classified in the field of analysis—certainly Lebesgue in 1902 
gave little hint of what was to come. On the other hand, it cannot 
be claimed that this sort of thing is an isolated phenomenon, and 
perhaps one may be permitted to argue that one of the beauties of 
mathematics is the presence of such mixtures between fields. 

Historically speaking, it was de Geöcze who called attention to cer­
tain phenomena—in a series of highly significant papers written dur­
ing the years 1908 to 1914—and, in attempting to fit these phenomena 
into the framework of the theory, first noticed the need for topology. 
(For a partial list of these papers see de Geöcze [l2]. A more de­
tailed bibliography at this point, and elsewhere throughout the 
paper, is found in Radó [26].) 

In discussing this matter let it be said, even at the risk of consider­
able over-simplification, that the significant problems in Lebesgue area 
have their source in the attempt to find 2-dimensional analogues f or f our 
classical results in the theory of length. In any event, with an eye on 
cohesion, it is here planned to consider only those topological tech­
niques which have bearing on what might be called the analogy 
problem. 

In consequence of this general plan of attack it is not only appro­
priate to sketch these classical results, but fortunately in so doing one 
automatically gains a measure of intuition by analogy and adequate 
motivation is provided for the 2-dimensional theory. 

Before plunging into the discussion, however, a remark should be 
made as to the manner of presentation in contradistinction to the 
plan of attack. Matters of analogy leading to intuitive understanding 
are considered important enough to develop so as to be practically 
self-contained. (For example, during the first part of this paper every 
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effort will be made to define the principal concepts involved.) Con­
sequently, it is to be hoped that a substantial portion of the subject 
matter will be followed readily by all. This plan must, of course, be 
abandoned in those sections dealing with specific topological tech­
niques—this is certainly not the place to consider such matters in 
any detail. 

2. Coordinate functions. For the purpose of considering the previ­
ously mentioned four classical results for curves, suppose ƒ is a map­
ping, that is, a continuous transformation, from the unit interval X1 

into Euclidean 3-space Ez. It is assumed that coordinate axes F1, F2, 
and F3 have been selected in E8. If pi:Ez-^Yi is the notation for the 
perpendicular projection of £8 onto Y\ while ƒ*' is the composition £*ƒ, 
then fl:Xl—>Y\ i = l, 2, 3, and in analysis the mapping ƒ is usually 
given by the so-called coordinate functions: 

yl = ƒ*(*), y2 = ƒ'(*), yz = /3(*), * G x. 

3. Classical formula. The classical integral formula fxl[(J1)2 

+ (J2)2+(Jz)2]ll2dx, where J^df/dx, * = 1, 2, 3, is to be designated 
by Pif)- This formula will not generally provide the length of the 
"curve given by f" Indeed, even if Lebesgue integration is used—and 
this will invariably be the case—the formula will generally be a mean­
ingless collection of marks, since there is no guarantee that the inte­
grand exists almost everywhere and is summable. In this connection 
it is to be understood, however, that if the symbol P(f) appears in a 
statement then it has meaning; in other words, the integrand in 
question does exist almost everywhere and, indeed, is summable. 

4. Representation. Before going any farther, it is advisable to make 
some comment on the phrase "curve given by f" used in §3. 

The mapping ƒ is simply a representation for a curve and the con­
cept of changing the representation is common, even in elementary 
mathematics, though it is subject to many interpretations. For a 
number of reasons the most convenient interpretation for present 
purposes is due to Fréchet [ i l ] . Accordingly f:Xl-+Ez and g\Xl—>EZ 

are said to represent the same curve, or, to use the modern terminology, 
are said to be Fréchet equivalent (notation: f~g), if and only if for 
every €>0 there is a homeomorphism ht:X

1**Xl such that 
d{f(x)> gh*(%)} <€i xÇ-XK A formal definition for a curve can now be 
offered in terms of this equivalence relation. (See Youngs [3l] where 
the matter is considered in detail for both curves and surfaces.) 

It is well known that the length of a curve is initially defined in 
terms of a given representation as the limit of the lengths of any 
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sequence of inscribed polygonal mappings which converge uniformly 
to the given representation. I t is easy to see, however, that the length 
of a curve is—as it should be—independent of the representation. (For 
greater detail see Radó [26].) The notation Ll(J) is here employed 
for the length of the curve given by the mapping ƒ :X1—>EZ. 

5. Classical theorems for curves and future criteria for surfaces. 
I t is now possible to state three of the promised classical results: 

Cil lée/) < oo<-»/* is BV( = 0/ bounded variation), i = l, 2, 3. 
CstL1^) < oo-*Ll{f)^Il{j)yandLl(j) = P(f)+-*f* is AC (=absolutely 

continuous), i = l, 2, 3. (In conformity with the convention in §3 the 
first statement means: Ll(f) < oo—»/1^) exists and Ll(j)^Il(j).) 

CzlLl(f) < oo —» there is a representation g~f such that P(g) =£*(#) 

6. Interval function. I t would be presumptuous to define the con­
cepts BV and AC except for the fact that a record of these defini­
tions affords both an insight into the 2-dimensional case and a con­
siderable economy in the sequel. 

For convenience suppose <j>\Xl-*El is a mapping from the unit 
interval into a line. (The mapping <t> is of the same type, therefore, as 
the coordinate functions f1, f2, and J3 of §2.) 

The key to the definitions of BV and AC is a certain interval func­
tion now to be considered. Suppose that r is a closed interval a^x^b 
in X1, while f — a\Jb. Then v<f,(r), the interval function in question, is 
simply the length of the interval from </>(a) to <f>{b) in El. 

7. An alternative interpretation. For the sake of insight into the 
2-dimensional case another interpretation of v${r) is important. 

Consider the components («maximal connected subsets) of E 1 

—<t>(f), and to avoid trivialities assume there is a bounded component 
K. Then 

where | K\ is the 1-dimensional Lebesgue measure of K; in this case, 
simply the length of the open interval K. 

Let T be the family of those mappings y:r-+El which agree with 
<i> on f. Then 

y(r)DK\J<Kf), T G T , 

but there is a mapping 70 GT (for example the unique linear mapping 
in T) such that 

7 0 ( f ) - i C U 0 (0 . 
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Hence 

n T W = 70(f). 
r 

Therefore, [lS1-0(*)l^ni<YW - [ ^ - ^ W K t y o M -7o(r) -*(*) - - £ , 
and one has the interpretation 

* , ( r ) - | [&-W)]n(\y(r)\. 
r 

8. Bounded variation and absolute continuity. If R is a closed 
interval in X, let <r(2?) be the notation for a subdivision of R; that isf 

a finite collection of r's, whose union is R and whose interiors are dis­
joint in pairs. Define 

V<j>(R) = sup X *•(')• 
<r(JR) rE<r(B) 

The number V*(.R) is called the variation of <j> on i?, and 

0 is BV weaws F^X1) < <x>. 

As for the concept of AC, to do minor violence to the customary 
definition: 

<j> is AC means: (a) for every €>0 there is a 6(e) such that if 
rii • • • , rn is a set of closed intervals with interiors disjoint in pairs 
and £ | r < | <ô(e), then E ^ W < e . 

(b) VAR) = E V*(r)t for any a(R). 
rS<r(R) 

It is well known, however, that (b) is always true, hence it is re­
dundant in this definition and is here displayed only for future use. 

9. Final classical theorem for curves and future criterion for sur­
faces. Now that these definitions have been recorded it is important 
to observe that in the case of a mapping/: X1—>E8, if o* is a subdivision 
of X1 and 

Uf) - Z [vW + vW + vWl1/!» 
re* 

then g9(J) is the length of the inscribed polygon determined by a. 
Moreover, if 

<?(ƒ) = sup *,(ƒ) 

then one has the final classical result: 
C4: £*(ƒ)= G(jf). 
(Notice that C4 implies Z,1^) =G(0) = V*{X1).) 
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10. Surfaces. In now considering the situation for surfaces, the same 
general outline is employed except that ƒ is now a mapping from the 
unit square X2 into Euclidean 3-space £3, and in contradistinction to 
the earlier convention, it is now assumed that F1, F2, and F8 are co­
ordinate planes in E3. If pl\Ez—>Yl is the perpendicular projection, 
then let ƒ* = £*ƒ as before. The mapping ƒi:X2-^Yi is a so-called jfla/ 
transformation from the unit square into a plane, i = l, 2, 3. 

The classical integral formula (see §3) remains unchanged except 
that J{ is now the Jacobean of the fiat transformation ƒ* and, of course, 
2-dimensional integration is understood. The formula will be desig­
nated by P(f) and the earlier conventions concerning its use apply. 
(See §3.) 

It has been stated that outstanding problems in Lebesgue area arise 
in the search for definitions of BV and AC for flat transformations 
which will provide results analogous to the classical theorems Ci, C2, 
C3, and C4 (see §§5 and 9). These theorems thus become criteria for the 
suitability of proposed concepts of BV and AC. 

Initial attacks on the problem were made by de Geöcze, and though 
he was far from being entirely successful in his venture, it came to be 
considered a safe judgment—even in a field where history has shown 
the most plausible conjectures to be fraught with disaster—that 
modifications of his ideas would stand the test of these criteria. In a 
sense, appropriate concepts have long been available—the difficulty 
has been in providing proofs. 

In defining BV and AC for flat transformations, the development 
will be by analogy from the 1-dimensional case and it must be stated 
that considerable expository license will be taken with the ideas of 
Cesari [3, 4, 5, 6, 7], Radó [18, 19, 20, 24, 25, 26, 27], and Reichel-
derfer [27, 28]. 

In accord with the modifications introduced above, the mapping 
<j> (cf. §6) is now considered to be a flat transformation from the unit 
square X2 into a plane E2. (It is therefore of the same type as the 
mappings/* found above.) The interval function of the 1-dimensional 
case is to be replaced by a function of the closure r, of a Jordan region 
bounded by a simple closed polygon fCX2. 

In the case for curves v^(r) was interpreted as the 1-dimensional 
measure of a certain set in El—<t>(ï) (see §7). By direct analogy, v+fjr) 
is now defined to be the 2-dimensional measure of the corresponding 
set [E2—#(f)]nrirYM where T is the family of mappings y:r—>E2 

which agree with <j> on f. 
The variation V^R) of <j> on R is defined in exactly the same manner 

(see §8) and there is no change in the definitions of BV,AC, and G(f). 
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(See §§8 and 9.) In view of this fact these definitions are not recorded 
anew. It is to be noted, however, that item (b) in the definition of AC 
is not redundant. In other words, what was really a theorem in the 
1-dimensional case now becomes an essential portion of the definition 
of AC. (See Cesari [ó].) 

It should be noted that the functional gc{f) can no longer be inter­
preted as the area of an inscribed polyhedron even if <r is a triangula­
tion of X2. The functional G(/), however, may be interpreted as one 
of the possible definitions for the de Geöcze area of the surface repre­
sented by / . 

11. Lebesgue area. Prior to considering how these concepts fit 
into the framework of the criteria Ci, C2, C3, and C4 (see §§5 and 9), 
it is proper to define £*(ƒ), the Lebesgue area of the surface repre­
sented by ƒ. A mapping p : X—»£3 is said to be polyhedral ( = quasi 
linear, see McShane [16]) if there is a triangulation T of X with the 
property that pi=ipip is linear on each triangle of T. (See §10.) The 
elementary area £(p) of the polyhedron given by p is simply the sum 
of the areas of the triangles p(A), A£!T, and 

L2(f) = inf [liminf £(pn)l, 

where the infimum is taken for all sequences pn converging uniformly 
to ƒ. It is not difficult to see that if ƒ and g represent the same surface 
(see §4) then L2(f) =L2(g). (There is an obvious lack of analogy here 
between the definitions of length (see §4) and area. In point of fact, 
length could equally well have been defined by 1-dimensional con­
siderations precisely analogous to the 2-dimensional considerations 
above. This was not done since the definition of §4 is better known. 
It is not to be supposed, conversely, that area can be defined by con­
siderations precisely analogous to those employed in the definition 
of length given in §4. For a discussion of this matter see Youngs 
[31].) 

12. Generalized Jacobians. In addition to the definition of Le­
besgue area, it is necessary to say a word about the classical integral 
formula /*(ƒ), where the symbols J* now stand for the Jacobian of 
f\ i = 1, 2, 3. (See §§3 and 10.) For a variety of reasons it is necessary 
to generalize the concept of Jacobian. 

It will be recalled that the absolute value of the ordinary Jacobian 
of a flat transformation </> : X2-*E2 measures the local "ratio of magni­
fication" accorded by the mapping. By analogy from the 1-dimen­
sional case (see end of §9) one can hope that V<t>(r) =L2(<j>\r)—where 
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<j>\ r is the mapping <j> considered only on r. Hence a natural generaliza­
tion is to define 

where 5 is a square with sides parallel to the axes of X2 and x(Es°. 
(If the ordinary Jacobian J{x) exists almost everywhere then the same is 
true of J(x), and \j(x)\ *=J(x) almost everywhere; see Cesari [4] and 
Radó [26].) 

If the ordinary Jacobians in the classical integral formula P(J) 
are replaced by the generalized Jacobians, then the new formula is 
designated by 32(/) and the earlier conventions concerning its use 
apply (see §§3 and 10). 

13. Results for surfaces. As to the four criteria (see §§S and 9) 
it is now possible to state that these statements all hold if I1 is replaced 
by 3 2 and Ll by L2. 

This simple assertion is by no means simple to prove. It represents 
the concerted efforts of many mathematicians over approximately 
half a century and, in point of fact, Cs has only recently been an­
nounced by Cesari [8]. 

In proving these theorems one must naturally work with the basic 
function v^r), and it must be stated that an equivalent definition in 
terms of the degree of a mapping is employed. (See, for example, Cesari 
[3] and Radó [26].) This equivalent definition need not concern us. 
The point is that in consequence of this fact, it is only to be expected 
that standard theorems on the degree will be encountered. What is 
perhaps unexpected is that further topological methods, to be known 
in this context as topological adventures, must be brought to bear on 
the situation. In any event it is the topological adventures alone 
which will be the center of attention. 

It should also be stated that in view of technical complexities in­
volved in the proofs and, indeed, the sheer lengths of the proofs 
themselves, no details can be undertaken, and the application of the 
topological adventures to be considered can at best be implied. 

14. Inequality of Cesari and criterion Ci. Of the four theorems d 
perhaps deserves special attention in view of its difficulty and the 
bearing its solution has on some of the others, notably C4. 

That L2(f) < 00 implies ƒ* is BV was shown independently by 
Cesari [3] and Radó [24] during the war years. Cesari, however, 
proved both parts of Ci using an argument which culminated in the 
basic inequality, 
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VAX2) £ L2(/) ^ F,i(X2) + F/'(X2) + F^X2), i - 1, 2, 3. 

From this inequality the issue is settled at a glance. This superb re­
sult must certainly rank as an accomplishment of the first magnitude. 

The right half of the Cesari inequality is much more difficult to 
prove than the left. On the other hand, it will follow immediately 
from the definition of L2(f) if it can be shown that for each integer n 
there is a polyhedral mapping $n'X—>ES such that 

(a) <*(ƒ(*), &»(*)) < 1/n, xGX. 
(b) E(Pn) â VAX") + VAX') + VAX"). (See §11.) 

To obtain (a) by itself is a triviality, but to obtain it in conjunc­
tion with (b) is no easy task and involves carefully fitting together a 
polygonal mapping by a highly delicate argument. A salient step 
deeply imbedded in the chain of reasoning is concerned with a prop­
erty of Euclidean 3-space which should be of some interest. 

In E3 let M consist of the coordinate axes X} F, Z. With 8>0, de­
fine M« to be the union of the four lines: 

Xi'.y = 0, z = - Ô. Y6:x = 0, z = Ô. 

Z$lx = ô, y = ô. Zjix = — 5, y = — ô. 

Now suppose that one is given a closed path in Ez — M at a distance 
greater than 8 from M. A lemma of Cesari [2] states that if the path is 
contractible in EZ — MB then it is also contractible in Ez — M and con-
versely. (This form of the statement is due to Eilenberg [lO] who has 
also considerably shortened the original proof.) 

The inequality of Cesari shows, by the way, that 

(a) Z*(/0 - V,<(X*), i = 1, 2, 3, 

and hence 

(b) L*(f) £ L*(f) g L\P) + L\P) + L\P\ i - 1, 2, 3. 

But (a) can be proved independently, and hence the Cesari in­
equality follows if the same is true of (b). 

The first half of (b) is obvious and the second has the deceptive 
air of appearing to be simpler to prove than the Cesari inequality 
since the functional L2 alone appears. However, it is not known 
whether (b) can be proved directly or not. 

IS. Middle space topology. It is not to be supposed however that 
Ci was proved without further topological adventures. For example a 
close scrutiny of the character and disposition of the inverse sets 
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/""1(y)i y€zE3> was required. Since studies of this character also appear 
in connection with the other theorems, and here analytic topology 
plays a major role, the matter cannot be dismissed with cursory 
mention. (For reasons which will become apparent this whole branch 
of the theory has aptly been called middle space topology by Radó 
[23].) 

The basic concept involved is that of a monotone-light factorization 
of a mapping. If f:X—>F is a mapping from a compact space into 
a metric space, then the Eilenberg-Whyburn Factor Theorem 
(see Whyburn [30]) states that there is a pair of mappings m\X-+!£ 
and Z:36—> F such that: 

(a) f=lm. 
(b) m is monotone ( = m~1(#) is a continuum, X(ELX), and m(X) =#. 
(c) / is light ( = no component of Z~1(y) consists of more than one 

point, y £ F ) . 
The space X is called the middle space of the monotone-light fac­

torization lm of ƒ. 
In the study of Lebesgue area it became evident that the structure 

of the middle space X—the image of the monotone factor—was of 
considerable importance in contradistinction to the apparently 
paradoxical fact that the structure of f{X)—the image of ƒ—had 
relatively little to do with the matter. 

For example, it was observed by Morrey [17] that if X is a 2-cell 
and L2(f) < <*> then it is possible to find a new representation g'.X—^E* 
such that the Lebesgue area is given by the classical integral formula P(g). 

16. Representation problem. This is perhaps as good a time as 
any to state that the general problem of finding new representations 
for a surface had earlier attracted the attention of Kerékjârto [14]. 
He considered the case in which X is a 2-sphere while jfi:X—>E8 and 
f2*X—>EZ are representations of the same surface, that is to say, are 
Fréchet equivalent (see §4). Under these conditions, Kerékjârto 
showed that there is a monotone-light factorization lm% of fi with com­
mon middle space 3Ê, i = 1, 2. (Note that the factorizations also have a 
common light factor.) 

It was initially supposed that the converse of this theorem is true. 
This is not the case (see Youngs [32]), and it should be mentioned 
that it is the converse which is important in these problems. How­
ever, Kerékjârto's work initiated the search for conditions which are 
both necessary and sufficient for fi~fï. (See §4.) This is the repre­
sentation problem for surfaces. The solution requires the use of alge­
braic topology—in this presentation the Cech cohomology theory 
with the additive group of integers as the coefficient group will be 
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employed. The result in question is the following and is initially 
stated for the case X is a 2-cell with boundary X. 

fi ~ h if and onh if: 

1. There is a monotone-light factorization Imi of ƒ»• with common 
middle space X, i = l, 2. 

2. If fhi = mi\x then there is a monotone-light factorization \yn of 
fhi with common middle space 3 , i = 1, 2. {This implies mi(X) —m^iX) 

3. If mt:H2(X, t)-*H\X, X) and tf\Hl(ü)-*Hl(X) are the homo-
morphisms induced by the mappings mi and JU» respectively, i = l , 2, 
then there is an automorphism r\\H2{Xy X)^H2(Xt X) such that 
with respect to the following diagram 

one has 5/x* — rjSjjfi and mt=*rjm*. 
In the event X is a 2-sphere, Jf = 0, and the statement of the result 

is simplified in the obvious manner (Youngs [32]). 

17. Additivity theorem. The first active use made of the solution 
of the representation problem was in the proof of an additivity theorem 
for the Lebesgue area. Suppose ƒ : X—>EZ represents a surface with X a 
2-sphere, and lm is a monotone light factorization of ƒ with middle 
space 36. (See §15.) The collection of true cyclic elements of 36 is at 
most denumerable. (See Whyburn [30].) Let them be represented by 
Si, @2, (£s, • • • . It is well known that there is a unique monotone 
retraction rw:36~>@w, w = l, 2, 3, • • • . 

If fn — lrnm, w = l, 2, 3, • • • , then this class of mappings is said 
to be the cyclic decomposition of ƒ, and the cyclic additivity theorem 
for Lebesgue area states that 

£'(ƒ) = ZW») , 
where the symbols on the right are interpreted to mean 0 if there are 
no true cyclic elements. 
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It should be stated that the theorem is also true in the event X is a 
2-cell as has been shown by Radó [26] and Helsel [13]. 

The cyclic additivity theorem shows that L2(/)=0 if the middle 
space has no true cyclic elements, that is to say, if 36 is a dendrite. Radó 
[22] has also proved the converse of this theorem thus providing an 
elegant characterization for surfaces of zero area. 

18. Criterion C4. It can be shown that the Geöcze area is also 
cyclicly additive, and hence the equality of the two definitions 
of area, that is, a solution of C4 (see §9) follows if (?(ƒ») =L2(/«), 
w = l, 2, 3, • • • . This has been done independently by Cesari [5, 7] 
and Radó [24, 26] in the event L(fn) < 00—it is topologically inter­
esting to note that the proof depends heavily on the fact that the sur­
face represented by ƒ„ can also be represented by a mapping gn 

which is light on the interior of X2, » = 1 , 2 , 3 , - - - . 
In the event L2(fn) = 00 Cesari completed the solution of this cele­

brated problem by employing his inequality (see §14) together with 
the obvious fact that 

VA(X2) £ G(/n), i - 1, 2, 3. 

For now 

L(fn) £ VA(X2) + V,l(X2) + VA(X2) £ 3G(fn). 

Consequently L2(fn) = 00 implies G(fn) = °°. 

19. Criteria C2 and C3. The lack of recent specific mention of 
C2 and C3 (see §5) may lead one to suppose that here, at any rate, no 
topological adventures are required. While, relative to the other 
theorems, there is a certain element of truth to this surmise, it is 
not to be supposed that C2 or C3 can be proved in the body of an­
alysis. For example, a basic step in the proof of C2 is the fact that C4 
is true in particular if L2(f)< 00. (See Cesari [4] and Radó [26].) 
Hence indirectly at least the most powerful methods of middle space 
topology are required. As for C3, Cesari's announcement shows that 
he proves this by first generalizing the result of Morrey already 
stated in part. (See §15 and Cesari [8, 9].) The argument again may 
be based upon middle space topology. Hence in a certain sense the 
most that can be said is that no topological adventures are required 
which are spectacularly different from those already employed in the 
proofs of Ci and C4. 

Relative to C3, a portion of the results of Cesari shows that if 
L2(f) < 00 then there is a closed set HQX and a representation g of the 
surface such that L2(g)^fH[(Jl)2+(J2

a)
2+(Jf)2]lf2dx. (See §3 and 
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Cesari [8].) The subscript s is here employed to indicate that the 
ordinary Jacobians are taken relative to the representation g but 
that the concept of differentiation is appropriately generalized using 
the work of Stepanoff. 

To date this result is the closest approach to an unsolved problem 
of obvious interest. If L2(J) < <x> is there a representation g~f (see §4) 
such that L2(g)~P(g)7 In other words is every surface of finite 
Lebesgue area so representable that the ordinary classical integral 
formula applied to this representation yields the Lebesgue area? 
Radó [21] has shown that if P(f) has meaning, then L2(f)^P(f)t 

and it is known that every surface, regardless of its Lebesgue area, 
has a representation g for which P(g) = 0. (See Youngs [33].) If the 
above question is answered in the affirmative it will certainly provide 
a beautiful link between the classical ideas of the last century and the 
modern theory of Lebesgue area. (Added in proof: Cesari has re­
cently shown that such representations exist.) 

20. Generalizations. The statement of this unsolved problem con­
cludes this survey of some of the topological adventures forced by 
these classical problems. However, a few concluding remarks will be 
made on generalizations in two directions : 

1. The problem of mappings from cells of dimension higher than 2. 
2. The problem of mappings from compact connected 2-manifolds. 
The first problem has attracted the attention of Fédérer who has 

reported (in correspondence) a fruitful generalization of the concept 
of BV for mappings from an w-cell into Euclidean w-space. His con­
cept is, in point of fact, a modification of the method by which Radó 
defines BV in the 2-dimensional case; namely by using the concept of 
essential multiplicity which he brought to bear on these problems 
twenty years ago. (See Radó [18].) 

Without going into details, Federer's ideas may be sketched as 
follows: 

Suppose <t>:Xn—>£w is a mapping from an w-cell into Euclidean 
w-space. For yt£En let St(y) be the open sphere of radius e about y, 
and Ui9 U2, Uz, • • • be those components of <trl(Se(y))^W having 
the property that UiC\Xn = 0> i = l, 2, 3, • • • (Xn is the boundary 
of X"). 

If =<^|PF then <t>:W—*St(y) and induces a homomórphism 
<j>*:Hn(S€(y))—>Hn(W) between the Lefschetz groups. (See Cartan 
[l].) But Hn{W) is naturally isomorphic to the weak direct product 
PwHn(Ui). If this isomorphism is denoted by 77, and generators s and 
u» are selected for the infinite cyclic groups Hn(S((y)) and Hn(Ui) 
respectively, $ = 1,2,3, • • • , then 
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<?!(«) = (fauu k2u2l faut, • • • ) 

where jfe» is an integer and different from zero for only a finite number 
of subscripts Ke(y). 

Now Ke(y) is independent of the selection of generators and does 
not decrease as €-»0. If K.(y) =lim K€(y)t then in case w = 2, Radó de­
fines it to be the essential multiplicity of y under </>. He further defines 
V^X2) =fi$*K(y)dy and shows that 

L\<f>) = f K(y)dy. 
JE? 

If n>2 then Ln(<t>)è>fEnK(y)dy and the equality need not hold 
even if n = 3. (Ln(rf>) is the w-dimensional Lebesgue "area" of the 
"surface" represented by <f> and is defined by obvious modifications 
of §11.) 

On the other hand, Fédérer defines X«(y) = ^ | f o | , and \{y) 
= lim \*(y). He then proves the fundamental equality: 

£•(*) = f \{y)dy. 
J g* 

The publication of this beautiful result will certainly be awaited with 
interest. 

It should be mentioned, under this first direction of generalization, 
that results for mappings—even from 3-cells—comparable in scope 
and importance with those results in the 2-dimensional case which 
are concerned with middle space topology lead immediately to basic 
unsolved problems; for example, the characterization of a 3-cell. One 
is perhaps permitted, therefore, to take a dim view of the possibility 
of startling developments along the lines of middle space topology in 
the immediate future. 

The second direction along which generalizations may be made, 
especially insofar as the corresponding representation problem is con­
cerned (see §16), has been of personal interest during the past few 
years. This general representation problem has been solved and uses 
the fundamental work done by Roberts and Steenrod [29] in char­
acterizing the monotone image of a 2-manifold. 

This is hardly the place for a discussion of the solution, but it may 
be of interest to note that a theorem corresponding to the cyclic 
additivity theorem goes through, and yields a generalization of the 
theorem of Radó concerning surfaces of zero area. (See §17.) Spe­
cifically, iff:X—*Ez is a mapping from a compact connected 2-manifold 
and lm is a monotone-light factorization of f with middle space X {see 
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§15), then L2(J) = 0 if and only if H2(X) =0; or alternately, L\f) = 0 
if and only if dim 36 <2. A certain "slenderness" of the middle space 
is thus a necessary and sufficient condition for the Lebesgue area to 
be zero. 
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