THE WEDDERBURN PRINCIPAL THEOREM
FOR ALTERNATIVE ALGEBRAS

R. D. SCHAFER

Except for a generalization of the so-called Wedderburn principal
theorem, the structure theory of alternative algebras over an arbi-
trary field is as complete as that for associative algebras. It is our
purpose here to fill this one gap in the alternative theory.

1. The principal theorem. A non-associative algebra U of order »
over an arbitrary field § is called alternative in case

ax? = (ax)x, x20 = x(xa)
for all a, x in . It is clear that associative algebras are alternative.
The most famous examples of alternative algebras which are not
associative are the so-called Cayley-Dickson algebras of order 8 over
$. Let B be an algebra of order 2 over § which is either a separable
quadratic field over § or the direct sum F@F. There is one auto-

morphism z—% of 8 (over §) which is not the identity automorphism.
The associative algebra Q = 8+# 3 with elements

(1 q = 21+ uz,, 2;1n B,
and multiplication defined by
(2) (21 1+ u2s) (23 + uz4) = (2125 + Bz4Z2) + w(3124 + 2322)

for 850 in § is called a quaternion algebra. For ¢ in the form (1), the
correspondence

3) q—q =% — uz=1t(q) — ¢

is an involution of Q. The Cayley-Dickson algebras € =Q+9Q are
obtained by repetition of this process: the elements of € are

4) x = q1 + vqs, ¢:in Q,
and multiplication in € is defined by
) (g1 + 9¢2)(gs + vg4) = (195 + v94G2) + v(§294 + ¢72)

for v#0 in §, where g¢—¢ is the involution (3) of Q.
Most of our knowledge of alternative algebras is due to M. Zorn.!
Presented to the Society, April 17, 1948; received by the editors February 9, 1948,
and, in revised form, April 26, 1948.

1 See references [6], [7], [9]. Numbers in brackets refer to the references cited at
the end of the paper.
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The radical M of an alternative algebra A is the set of properly
nilpotent elements of ¥, and is the maximal nilpotent ideal? of A. The
difference algebra A —N is semi-simple: it is the direct sum &, ® - - -
D S,, of simple components &;. Any simple alternative algebra is
central simple (that is, simple for all scalar extensions) over its center,
and all central simple alternative algebras are either associative or
Cayley-Dickson algebras.? In the sense of equivalence there is (over
a given field) exactly one Cayley-Dickson algebra with divisors of
zero.4

A non-associative algebra ¥ over § is called separable in case Ugp
is semi-simple (that is, a direct sum of simple algebras) for every
scalar extension & of §. It is easy to see that an alternative algebra %
is separable if and only if it is the direct sum of simple components
whose centers are separable fields (over §). Furthermore, if ¥ is
separable, there exists a scalar extension § of finite degree over §
such that Ag is a direct sum of components each of which is either a
total matric algebra or a Cayley-Dickson algebra with divisors of
zero.® Such a scalar extension & of § we call a splitting field of ¥,
and we use the term split algebra for a total matric algebra or a
Cayley-Dickson algebra with divisors of zero. The number of total
matric components of g is the same for all splitting fields & of ¥,
and is the sum of the degrees over § of the centers of the associative
simple components of . Similarly the number of Cayley-Dickson
components of g is independent of the particular splitting field &,
and is the sum of the degrees over § of the centers of the simple
components of ¥ which are not associative.

We shall prove the following.

2 It is asserted in the conclusion of [9] that ¢ is nilpotent, and that this may be
shown by methods similar to those employed in [8]. Since no proof has subsequently
appeared in the literature, and since we require the result, we give a proof in Lemma 1
below.

# We have given in [5, §§1, 2] a complete account of the structure of simple alterna-
tive algebras over an arbitrary field. We assume some familiarity on the part of the
reader with this account and with the proof of the Wedderburn principal theorem for
associative algebras as given, say, in [1, §3.8].

4 This corresponds to the fact that there is exactly one quaternion algebra over §
with divisors of zero: namely, the total matric algebra I, of degree two. For Q is a
division algebra (that is, has no divisors of zero) if and only if 3 is a field and g in
(2) is not the norm 22 of an element z in 8; otherwise Q is the total matric algebra
Me. If Q is a division algebra, and if v in (5) is not the norm ¢g of an element ¢ in
L, then € is a division algebra; otherwise € is the unique Cayley-Dickson algebra over
& with divisors of zero.

5 Since any semi-simple alternative algebra has a unity element, these statements
are immediate consequences of [3, §4] and [1, §3.7].
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THEOREM. Let N be an alternative algebra over an arbitrary field §, and
let M be the radical of . If A —N is separable, then =S+ N where S
is equivalent to A —N.

This theorem generalizes to the case of alternative algebras the
well-known Wedderburn principal theorem for associative algebras [1,
p. 47]. Its proof resembles the associative one.

2. The case N?7#0. We use the fact® that the “associator”
(6) [a1, as, @3] = (a1a5)as — ai(azas)
“alternates” in an alternative algebra ¥; that is,
@) [a1, az, as] = e[ai, @iy, as], a;in ¥,

for any permutation 4y, 4, 43 of 1, 2, 3, where € is 1 in case the per-
mutation is even, —1 in case it is odd. Furthermore, any subalgebra
of I generated by only two elements is associative.” This implies
that powers x7 of an element x in ¥ are unambiguously defined, and
that we have

(8) Ri=R. Li=L) L.,R.,=R.L,

of all x in 9, where R, and L, are the right and left multiplications?
of A determined by x. Equation (7) is equivalent to the equalities

R.Ry— Ruy=Lu —L,L,=L,R, — R,L,=L,L, — Ly,

9)
=R,L,— L,R,=R,,— R,R,

for all x, y in U.

A non-associative algebra M is called nilpotent® in case there exists
an integer ¢such that every product of ¢ elementsin i, no matter how
associated, is zero. It follows from an observation of Etherington [4,
p. 2] that 9N is nilpotent if and only if the associative algebra J*
generated by the right and left multiplications of N is nilpotent (for
a simple induction suffices to prove that, if #**=0, then every prod-
uct of t=2%elements of N is zero). It is an immediate consequence of
the known structure theory for alternative algebras and of the fol-
lowing lemma that the radical ) of an alternative algebra ¥ is the

8 [6, equation (5), p. 126].

7 The so-called Theorem of Artin [6, p. 127].

s See [2, §2].

® The term “strongly nilpotent” has been used for this concept recently, and “nil-
potent” used in case the associative algebra N* were nilpotent. However, Ethering-
ton’s theorem shows the equivalence of the two notions.
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maximal nilpotent ideal in %, and is the minimal ideal such that
A —N is semi-simple.

LEMMA 1 (ZORN). Let N be an alternative algebra, each of whose
elements is nilpotent. Then N is nilpotent.

If € is any linear subset of N, we denote by €* the subalgebra of N*
generated by the right and left multiplications of M corresponding to
elements of €. We shall prove by an induction on the number of gen-
erating elements of B that B* is nilpotent for all subalgebras B;
hence, in particular, for 3=N. If B is generated by one element x,
then by (8) any T in 8B* is a linear combination of transformations of
the form
(10) RY, L2 RIE
for j;=1. Then, if x7=0, we have T%-1=0, 8* is nilpotent. Hence,
by the assumption of the induction, we may take a maximal proper
subalgebra B of N and know that B* is nilpotent. But then there
exists an element ¥ not in B such that

(11) aB* <P,

For B**=0 implies that NB**=0=9D, and there exists a smallest
integer m =1 such that ®B*» <YB. If m =1, take x in N but not in B;
if m>1, take x in B*»~1 but not in B. Then (11) is satisfied. Since B
is maximal, the subalgebra generated by B and x is N itself. It fol-
lows from (11) that R=B+F [x]. Put y =5 in (9) for any b in B. Then
(11) implies that

R.Ry = Rbl — RyR,, R.Ly = LyR. + RyR. — sz,

12
( ) L:cRb = RbLz + LbL:c - Lbsy L:cLb = L61 — LiL,

for b; in 8. Equations (12) show that, in each product of right and
left multiplications in B* and (xT)*, the transformation R, or L,
may be systematically passed from the left to the right of Ry or Ls
in a fashion which, although it may change signs and introduce new
terms, preserves the number of factors from B* and does not increase
the number of factors from (x§)*. Hence any T in N*=(B+xF)*
may be written as a linear combination of terms of the form (10) and
others of the form

B,  BuR., BL., B.R;L.'
for B; in B*, m;=1. Then, if B**=0 and x7=0, we have T*@-1D =(;
for every term in the expansion of T'*—D contains either at least
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k factors B; or an uninterrupted sequence of at least 2j—1 factors
from (x3)*. Hence N* is nilpotent, and so is N.

Let B be an ideal of a non-associative algebra %. We define a
family of subalgebras B¢ (=1, 2, « - - ) of U inductively as follows:

(13) Bt =9, Bi=@BB,BY), i=2,3---,

the linear subset of U spanned by elements of BB*~! and B1B. For
any U, the B¢ form a descending chain

=P zB*=2..- 29

v

of ideals of B. For alternative algebras A, we have the following
stronger statement.

LeMMA 2. Let B be an ideal of the alternative algebra N. Then the
subalgebras Bt in (13) are ideals of N.

The proof is by induction: B! is an ideal by hypothesis. We assume
that B! is an ideal of . An arbitrary element of AB? is the sum of
elements of the form of a(xy) and a(yx) for ¢ in ¥, x in B, y in B+,
Then

(14) a’(xy) = (ax)y— [(1, X, y] = (ax)y—- [yr a, x]
= (ax)y — (ya)x+y(ax)
by (7). The right-hand side of (14) is in B¢ by the assumption
of the induction. Similarly a(yx) is in 8%, and we have AB:=B*. The
reciprocal relationship in alternative algebras gives BYU < B¢, or B?
is an ideal of U.
Let N be the radical of an alternative algebra . Since N is nil-

potent by Lemma 1, there is a smallest integer 7 such that Jr=0.
Moreover, in the chain

RN=RN>N>--->N"=0

the inclusions are proper inclusions, since N=1=N¢ for 25157
would imply R=1=Ni= . . .« =N"=0, a contradiction. By Lemma 2
the N¢ are ideals of Y.

An inductive argument based on the dimension of N suffices to re-
duce the proof of the principal theorem to the case N2=0. For the
preliminaries disposed of in this section allow us to use the argument
of the associative proof [1, p. 47].

3. The case N2=0. In §4 we shall prove the principal theorem for
9 having a unity element, with #2=0 and % —N a split algebra (that
is, either a total matrix algebra or a Cayley-Dickson algebra with
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divisors of zero). At this point let us assume this result and show how
the case N?=0 of the principal theorem may be proved.

First the theorem may be reduced to the case where ¥ has a unity
element. If % has no unity element, adjoin a unity element e to obtain
Ay =eF+A. Then U, is alternative. Also the radical N of A is the radi-
cal of ;. For N is a nilpotent ideal of U; and is therefore contained in
the radical Ny of A;. Conversely if a; is in Ny, then a;=ae+a for a in
&, a in ¥, and there exists an integer ¢ such that &} =a’e+a’=0 for
a’ in Y. Hence at=0, =0, a;=ca is in A, I =A. Then N, is a nil-
potent ideal of ¥, N; =N. If we can obtain a Wedderburn decomposi-
tion Ay =S;+N of A;, we have A=S+N where S=S,NA==A —N.

Throughout the remainder of this paper we assume that U has a
unity element e, and that M2=0. We denote residue classes modulo
N by the customary bracket symbol [ ].

Lemma 3. If [ui), - - -, [u.] are pairwise orthogonal idempotents
in A—N, there exist pairwise orthogonal idempotents e, - « + , es in A
such that
(15) le:] = [ui], i=1---,s

Furthermore, if [e]=[w ]+ - - - +[u,], then e=es+ - - - +e..
We prove the first assertion by induction. The element
(16) e1 = 3uf - Zuf
is an idempotent in . For, since #?—u,; is in N, N2=0, we have
(3 —u;)2=0, and el=e¢; by (16). Also
17) [ex] = [w]

by (16), so that e;£0, and we have proved the case s=1. If f; is any
idempotent in A, write fo=e—f;, so the Peirce decomposition of
A relative to f, takes the form

A = fLf1 + f1fo + follf1 + folfo,

where products fiaf; (2, 7=0, 1) for ¢ in ¥ are trivially seen to be
associative. The f.3f; (¢=0, 1) are orthogonal subalgebras of . The
corresponding Peirce decomposition of A —N is

A— N = [fi]A = W]+ [A]&A =[]
+ [fo]@ = W) [A] + [fo]@ — M) [/o].

We assume the existence of pairwise orthogonal idempotents
es, - -+, e, in A such that [e;]=[u:], i=2, - - -, 5, and write fi=e:
+ -+« +e,. Then [u:] is orthogonal to [fi]= [uz]+ « - - + [u,], and
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we have [u;] in [fo](X—R) [fo]. Hence we may choose u; in the sub-
algebra fofo of ¥, so that e, in (16) is in f,fo and is therefore orthog-
onal to fi=es+ .- +e. That is, e, e -, e, are pairwise
orthogonal idempotents in A, (15) holds, and the inductive proof is
complete. Since e;+ - - - e, is idempotent, e—(es+ - - - Fe,) is
either zero or idempotent. But [e]=[u1]+ - - -+ +[u,] implies that
e—(ea+ - -+ +e) is in N and cannot be idempotent; hence
e=e;+ - - e

The reduction of the principal theorem to the case A —MN simple is
now easy. Let A—-N=B:® - - - &B, for simple algebras B,;. By
Lemma 3, there exist pairwise orthogonal idempotents e; in U such
that the unity element of B;is [e:]. In the refined Peirce decomposition

(18) QI"—‘ZQI-H (1:,]'=1,"’,S)

we have I;;=ee; (associative products!), and the radical N; of As;
is the intersection of N and Ai; [9, §§4, 5]. It is easy to see that U,
—NixPB;. If we have Wedderburn decompositions Ui;=&;+N;,
©,;229, then (since the subalgebras %;; of A are pairwise orthogonal)
the sum of the subalgebras &; of ¥ is the direct sum &=&,® - - -
O S, =Y — N, and we have A=S+N.

We can now prove the principal theorem. Since A — N is separable,
there exists a splitting field & such that (A —N)e=Ue—Ng is a direct
sum of split algebras. Then Ng is the radical of Ag (since it is a nil-
potent ideal containing the radical). By the result in the preceding
paragraph, we may assume that (A —N)e has only one simple com-
ponent (a split algebra). Then by §4 below, g contains a subalge-
bra B=(A—N)e. The remaining steps are those of the associative
proof [1, p. 48], since no form of associativity is used there.

4. The case A—N a split algebra. We assume throughout that U
has a unity element e, and that M?=0. Suppose that A —N is a total
matric algebra I, of degree s. Then the principal theorem is an im-
mediate consequence of Lemma 4, which we state in the following
slightly more general form for use in the proof of Lemma 5.

LemMA 4. Let A —N contain a total matric algebra M, with unity ele-
ment [e]. Then U contains a total matric algebra M of degree s with
unity element e, and M, is the image of I under the homomorphism

x—[x] of A onto A—N.

For let M, have basal elements [u;;] (3, =1, - -+, s) with the
customary multiplication table

(19) [i:) [ur] = 85 [war] (Kronecker delta).
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Then [e]=[un]+ - - - + [#s], and by Lemma 3 there exist pairwise
orthogonal idempotents e;; in ¥ such that [ui]= [ew], e=eu+ - - -
+e,. In the Peirce decomposition (18) of U relative to this set of
idempotents we have %;;=e;:e;;.

We may take u1=eu. Since [#i1]= [e::] [#i1] [enn], we may also take
i in Wiy (=2, - - -, 5), and similarly take uy; in Ay; (=2, + - -, 5).
It follows from (19) that

(20) Ui = €1 + @;
where a; is in N3, A0 < NN W11 since
(21) Ws WA < Ui
[9, equation (4.5.1)]. Put
e1; = (enn — a;)u1j, e = Ui (4, 7=2,-+-,59).
Then e; is in %, A1;=Wy; by (21), and ey is in ;. Since
(22) (%:3yix) 28 = %ii(Y 88 unless (4, 7, k) = (4, 4, 1)

fOr %ag, Vapy Zap in Aap [9, Theorem (4.7.1)], we obtain the formula
(23) €1jej1 = €11 (] = 1, LI S).

The case j=1 of (23) is trivial, and for j>*1 we have eje;
= {(en—aj)uj}up = (en—a;) (urju;n) = (eu—a;) (en+a;) =en by (22),
(20), and the fact that ey is the unity element of %y, while @} =0 since
N2=0.
Define

(24) €;; = €;161j (1, ;éj; 1,] =2 .-, S)
in Aay;=WAsj. Since [ea]=[ua] and [ey;] = [en—a;][u1;] = [un] [112;]
= [uy;], we have [e:;] = [ui;]. Note that (24) holds if =1 or j=1. Also
(24) holds if i=j. For (exe1;)?=en{ (eri¢ir)es} =eaews by (23) and the
Theorem of Artin; since [eser;] = [u:i] = [ei:], we may apply the sec-

ond part of Lemma 3 to ;; to obtain e;;=ese;. Formula (24) is
established for all 7, j=1, - - -, 5. Now

(25) €;j6nx = 0 fOI‘j = h.
For %% =0 (k) unless k=4, k=7 [9, Theorem (4.5.3)]. But
(26) iy =0 for x:;in Wsj, i # j

[6, p. 132, formula (15’")], which disposes of the remaining case in
(25). We have

27 e1i6ix = €1k, €ri€i1 = €1 Grk=1,-+-,5).



612 R. D. SCHAFER [June

For, since we have proved (23), we may take k5£1. Then by (24),
(6), (7), (23), and (25), we have eije;r=ei;(enen) = (eren)en— [exs,
€1, ew) =ew— [elky e1j, e;1] =ew — (ewer;) e +es(erje;r) = en. The second
equation in (27) is the reciprocal relationship. With (27) we can prove

(28) €k = €k (i, j, k= 1, cecy, S).

For eijen=(ener)en=ealerien) — [ea, ey, ei]=eaw—ler;, en, €]
=€ “61k8i1+e1j(ejkei1) LI o= k, this gives €;3€5i = €5 — eu—f—el,eﬂ =¢€ii,
if 4%k, it gives e;je;n =eq by (25). Equations (25) and (28) imply that
the subalgebra I of A with basis e;; (¢, j=1, - - -, s5) is a total matric
algebra, and the lemma is proved.

Consider the total matric algebra IMN. of degree two over §; it is a
quaternion algebra with divisors of zero.!® Taking the usual matric
basis e;; (4,7 =1, 2) for Mo, the unity element is e;1 +e22 and the involu-
tion g—g=1(q) (enn+e22) —q of M, is defined by

(29) & = €j;,  &ij = — €ij (i#754,7=12).

The algebra €=M,+wIM; with elements g1+wgs (for ¢; in M») and
multiplication

(30) (q1 + wg2)(gs + wgs) = (9195 + qa2) + w(Gr1gs + gsq2)

is a Cayley-Dickson algebra (we have written w for v in (5) and set
v =1). Since the Cayley-Dickson algebra with divisors of zero is
unique, it may be taken in this form.

LemMA 5. Let A—N=C, a Cayley-Dickson algebra with divisors of
zero. Then A=C+N where C;=C.

For we may take € in the form € = M:+ [w]M;, where, for elements
[¢] in M;, multiplication is given by (30) with brackets. By Lemma 4,
I contains a total matric algebra I of degree two such that e is the
unity element of I and the matric basis e;; of M gives the matric
basis [ei;] of Mz. Note that [g]=[g] for ¢ in M. In the proof of [5,
Theorem 2], it is shown that the multiplication formula (5) follows
from the alternative law and formulas v?=+ye, qv=9g for ¢ in Q.
Therefore, in order to prove the lemma, it is sufficient to show the
existence of an element v not in I such that

(31) v? = ¢, qv = 9§ for ¢ in Y.
Write
(32) [fii] = [w] [eif] for ¢ ¢] (1:.7 = 1, 2)

10 See footnote 4.
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We may take fi; in %i; (i#7), for [ex]([fi;]less]) = [e:]([w][es]?)
[w][esesi] = [w]le;; ] =[fi;] by (32), (30), (29). Now [es][fis]
le;i]([w]lei]) = — [w]([eji][e;;]) = [0] implies that

eitfij=0i (i¢j:7‘1].=1s2)

for ¢; in MNA;;. Write
hij = fii — eiici.

Then hijis in Asj, [hi;] = [fi;], and

(33) €jihi; = hijesi =0 (i#74,7=1,2).
For ejihij"——-Cj_eji(eijCj) =Cj—(ejieij)6j=0 by (22). Moreover, €;;C;
=eij(ejif i) = (eisei)fii— leis s, fisl =fiit [fiir €is ;] =fiit+ (fiseii)ess
—fii(ejieis) = (fiseji)ei; by (7), and we have ki e =fije;i— {_(f ije{i)eii}eii
=0 by (22). Now [k:;][k;:] = [fi;][fii] = [ei][¢;;] = [ei:] implies that

khiihi; = e + a;
for a; in RNYU;; (¢=1, 2). Since N?2=0, we have a?=0, and
(34) (e — a3)(esi + a5) = ei; = (es + a;)(esi — as).
Write

P12 = (en1 — @) bz, po1r = ho1
Then pi; is an Ay, [pi;j] = [fi;], and we shall prove
(35) piibii = €u (G#7;4,7=1,2).
For pupa={(en—a1)ha}ha = (en—a1) (husha) = (enn —a1) (en+a1) = en
by (22) and (34). But aihi=(hijhji—ei)hij=hij(hjihi;) — hi;
= h;i(eji+a;) —hij=hija;, so that
(36) P12 = b1z — a1hia = hia — k1202 = his(esr — a3)

and papie= ha { h12(822 - az) } = (h21h12) (822 "‘a«z) = (622+a2) (822 —dz) =e€22
by (22) and (34). It follows from (33), (36), and (22) that

(37 €ijpii = piiei; =0 (i#7;4,7=1,2).
Finally write
= P12 + por

Then ['U] = [fm] + [f21] = ['w], and 22=(pra+pu)?=piaspa—+przpa=en
+e=e by (26) and (35). For 75j we have e;v=-e;i(p:j+pji) =pi;
= (pij+pj)ej; =ve;j; also (26) implies that (e:;+pij)? =ei;pi;+pijei; =0
so that ejv=eij(pij+pi:) =eipi;= —pijeij= — (pij+pii)eij= —vei; by
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(37). Hence gv=vq for all ¢ in M by (29), and we have shown the
existence of an element v in ¥, not in MW, satisfying (31). This com-
pletes the proof of the lemma, and of the theorem.
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