
THE WEDDERBURN PRINCIPAL THEOREM 
FOR ALTERNATIVE ALGEBRAS 

R. D. SCHAFER 

Except for a generalization of the so-called Wedderburn principal 
theorem, the structure theory of alternative algebras over an arbi­
trary field is as complete as that for associative algebras. It is our 
purpose here to fill this one gap in the alternative theory. 

1. The principal theorem. A non-associative algebra 31 of order n 
over an arbitrary field % is called alternative in case 

ax2 = (ax)xf x2a = x(xa) 

for all a, x in 21. I t is clear that associative algebras are alternative. 
The most famous examples of alternative algebras which are not 

associative are the so-called Cayley-Dickson algebras of order 8 over 
$. Let S be an algebra of order 2 over % which is either a separable 
quadratic field over 5 or the direct sum 5 ©3- There is one auto­
morphism z—>z of S (over %) which is not the identity automorphism. 
The associative algebra O = 3~\~US with elements 

(1) q = si + uz2f Zi in Sy 

and multiplication defined by 

(2) (Si + UZ2)(Z3 + UZÀ) = (ZlZz + JSZ4Z2) + U(ZIZA + Z3Z2) 

for /JT^O in § is called a quaternion algebra. For q in the form (1), the 
correspondence 

(3) q —> q = Zi — uz2 = t(q) — q 

is an involution of O . The Cayley-Dickson algebras S = 0 + ^ 0 are 
obtained by repetition of this process: the elements of S are 

(4) x = qi + vq2, q% in O , 

and multiplication in S is defined by 

(5) (qi + vq2)(qs + vq*) = (qiq* + yqfà) + v(qiq* + qzq*) 

for 77^0 in %, where q—»g is the involution (3) of Q . 
Most of our knowledge of alternative algebras is due to M. Zorn.1 

Presented to the Society, April 17, 1948; received by the editors February 9, 1948, 
and, in revised form, April 26, 1948. 

1 See references [6], [7], [9]. Numbers in brackets refer to the references cited at 
the end of the paper. 

604 



WEDDERBURN THEORY FOR ALTERNATIVE ALGEBRAS 605 

The radical 31 of an alternative algebra 21 is the set of properly 
nilpotent elements of 21, and is the maximal nilpotent ideal2 of 21. The 
difference algebra 21 — 9? is semi-simple: it is the direct sum ©i© • • • 
®<Sm of simple components ©*•. Any simple alternative algebra is 
central simple (that is, simple for all scalar extensions) over its center, 
and all central simple alternative algebras are either associative or 
Cayley-Dickson algebras.3 In the sense of equivalence there is (over 
a given field) exactly one Cayley-Dickson algebra with divisors of 
zero.4 

A non-associative algebra 21 over % is called separable in case 21& 
is semi-simple (that is, a direct sum of simple algebras) for every 
scalar extension $ of §. It is easy to see that an alternative algebra 21 
is separable if and only if it is the direct sum of simple components 
whose centers are separable fields (over %). Furthermore, if 21 is 
separable, there exists a scalar extension $ of finite degree over § 
such that 21$ is a direct sum of components each of which is either a 
total matric algebra or a Cayley-Dickson algebra with divisors of 
zero.6 Such a scalar extension Ü of 8 we call a splitting field of 21, 
and we use the term split algebra for a total matric algebra or a 
Cayley-Dickson algebra with divisors of zero. The number of total 
matric components of 21$ is the same for all splitting fields $ of 21, 
and is the sum of the degrees over S of the centers of the associative 
simple components of 21. Similarly the number of Cayley-Dickson 
components of 21$ is independent of the particular splitting field $ , 
and is the sum of the degrees over $ of the centers of the simple 
components of 21 which are not associative. 

We shall prove the following. 

2 It is asserted in the conclusion of [9] that Sft is nilpotent, and that this may be 
shown by methods similar to those employed in [8]. Since no proof has subsequently 
appeared in the literature, and since we require the result, we give a proof in Lemma 1 
below. 

3 We have given in [5, §§1, 2] a complete account of the structure of simple alterna­
tive algebras over an arbitrary field. We assume some familiarity on the part of the 
reader with this account and with the proof of the Wedderburn principal theorem for 
associative algebras as given, say, in [l, §3.8]. 

4 This corresponds to the fact that there is exactly one quaternion algebra over g 
with divisors of zero: namely, the total matric algebra $D?2 of degree two. For O is a 
division algebra (that is, has no divisors of zero) if and only if 3 'ls a field and 0 in 
(2) is not the norm zz of an element z in «3; otherwise O is the total matric algebra 
S0Î2. If O is a division algebra, and if y in (5) is not the norm q% of an element q in 
O, then (& is a division algebra; otherwise (£ is the unique Cayley-Dickson algebra over 
5 with divisors of zero. 

8 Since any semi-simple alternative algebra has a unity element, these statements 
are immediate consequences of [3, §4] and [l, §3.7]. 
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THEOREM. Let 2Ï be an alternative algebra over an arbitrary field %, and 
let 5ft be the radical #ƒ 2Ï. If 21 — Sft is separable, then 21 = ©+Sfl where © 
is equivalent to 21 — 5W. 

This theorem generalizes to the case of alternative algebras the 
well-known Wedderburn principal theorem for associative algebras [l, 
p. 47]. Its proof resembles the associative one. 

2. The case ?{V0. We use the fact6 that the "associator" 

(6) [ah a2, 03] = (aia2)as — ai(a2az) 

"alternates" in an alternative algebra 21; that is, 

(7) [ah a2, a3] = e[ah, aiv ai%], a{ in 21, 

for any permutation iu i2, i% of 1, 2, 3, where € is 1 in case the per­
mutation is even, —1 in case it is odd. Furthermore, any subalgebra 
of 2Ï generated by only two elements is associative.7 This implies 
that powers x1' of an element x in 21 are unambiguously defined, and 
that we have 

(8) Rxi = Rx, Lxî = LX1 LXRX = RJLX 

of all x in 21, where Rx and Lx are the right and left multiplications8 

of 21 determined by x. Equation (7) is equivalent to the equalities 

J\.XJ\.y —"~ J\.Xy = : JL/ Xy — JUyJL/X
 = = JUyJS.X "~~ J\. XJUy = = JU XL/y J^jy X 

(9) 
— J\.yJLj X "—* JLJ XJS-y —" JLVy x """ JXylV X 

for all xy y in 2Ï. 
A non-associative algebra 5ft is called nilpotent9 in case there exists 

an integer / such that every product of / elements in 5ft, no matter how 
associated, is zero. It follows from an observation of Etherington [4, 
p. 2] that 5ft is nilpotent if and only if the associative algebra 5ft* 
generated by the right, and left multiplications of Sft is nilpotent (for 
a simple induction suffices to prove that, if yi*k = 0, then every prod­
uct of / = 2* elements of 9t is zero). It is an immediate consequence of 
the known structure theory for alternative algebras and of the fol­
lowing lemma that the radical 91 of an alternative algebra 21 is the 

6 [6, equation (5), p. 126]. 
7 The so-called Theorem of Artin [6, p. 127]. 
8 See [2, §2]. 
9 The term "strongly nilpotent7' has been used for this concept recently, and "nil-

potent" used in case the associative algebra $1* were nilpotent. However, Ethering-
ton's theorem shows the equivalence of the two notions. 
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maximal nilpotent ideal in §ï, and is the minimal ideal such that 
SÏ — 9̂  is semi-simple. 

LEMMA 1 (ZORN). Let 5ft be an alternative algebra, each of whose 
elements is nilpotent. Then 5ft is nilpotent. 

If (£ is any linear subset of 5ft, we denote by (S* the subalgebra of 5ft* 
generated by the right and left multiplications of 5ft corresponding to 
elements of S. We shall prove by an induction on the number of gen­
erating elements of S3 that S3* is nilpotent for all subalgebras S3; 
hence, in particular, for S3 = 5ft. If 33 is generated by one element x, 
then by (8) any T in S3* is a linear combination of transformations of 
the form 

(10) Rx i LX1 RXLX 

for j» è l . Then, if x] = 0t we have J '2^1 = 0, S3* is nilpotent. Hence, 
by the assumption of the induction, we may take a maximal proper 
subalgebra S3 of 5ft and know that S3* is nilpotent. But then there 
exists an element x not in S3 such that 

(11) *S3*^S3. 

For S3** = 0 implies that 5ftS3** = O^S3, and there exists a smallest 
integer m ^ 1 such that 5ftS3*m g S3. If m = 1, take x in 5ft but not in S3 ; 
if m > 1, take x in 5ftS3*w_1 but not in S3. Then (11) is satisfied. Since S3 
is maximal, the subalgebra generated by S3 and x is 5ft itself. I t fol­
lows from (11) that 5ft = S3 + g [x]. Puty^b in (9) for any b in S3. Then 
(11) implies that 

RxRb = Rb* — RbRxi RxLb = LbRx 4~ RbRx — Rbn 
(12) 

Lé xJ\-b — -K-bLt x I L»bLt x -̂ &3> Li xl^b — L>b\ LibLi x 

for bi in S3. Equations (12) show that, in each product of right and 
left multiplications in S3* and (#$)*, the transformation Rx or Lx 

may be systematically passed from the left to the right of Rb or Lb 
in a fashion which, although it may change signs and introduce new 
terms, preserves the number of factors from S3* and does not increase 
the number of factors from (#§)*• Hence any T in 5ft* = (S3+#g)* 
may be written as a linear combination of terms of the form (10) and 
others of the form 

Bi, B%RX , BQLX , B±RX Lx 

for Bi in S3*, m&l. Then, if S3*fc = 0 and *>' = 0, we have r f c ( 2 ^ 1 ) = 0 ; 
for every term in the expansion of TWi~l) contains either at least 
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k factors Bi or an uninterrupted sequence of at least 2/ —1 factors 
from (xg)*. Hence 5ft* is nilpotent, and so is 5ft. 

Let 93 be an ideal of a non-associative algebra 2t. We define a 
family of subalgebras SB* (i = 1, 2, • • • ) of 2( inductively as follows: 

(13) 931 =93, 93* = (9393*-1,93*~193), * = 2, 3, • • • , 

the linear subset of 21 spanned by elements of 9393*"1 and 93*~*93. For 
any 21, the 93* form a descending chain 

93 = 931 = 932 à • • • = 93 r
 = • • • 

of ideals of 93. For alternative algebras 2Ï, we have the following 
stronger statement. 

LEMMA 2. Let 93 be an ideal of the alternative algebra 21. Then the 
subalgebras 93*in (13) are ideals of 21. 

The proof is by induction: 931 is an ideal by hypothesis. We assume 
that 93*_1 is an ideal of 21. An arbitrary element of 2193* is the sum of 
elements of the form of a{xy) and a(yx) for a in 2Ï, x in 93, y in 93*~*. 
Then 

(14) a{xy) = (ax)y — [a, x, y] = {ax)y— [y, a, x] 

= (ax)y — (ya)x+y(ax) 

by (7). The right-hand side of (14) is in 93* by the assumption 
of the induction. Similarly a(yx) is in 93*, and we have 2193* = 93*. The 
reciprocal relationship in alternative algebras gives 93*21^93*, or 93* 
is an ideal of 2Ï. 

Let 5ft be the radical of an alternative algebra 21. Since 5ft is nil-
potent by Lemma 1, there is a smallest integer r such that 5ftr = 0. 
Moreover, in the chain 

5ft = 5ft1 > 5ft2 > • • • > 5ft' = 0 

the inclusions are proper inclusions, since 5ft*-1 = 5ft* for 2 = i = > 
would imply 5ft*-1 = 5ft* = • • • = 5ftr = 0, a contradiction. By Lemma 2 
the 5ft* are ideals of 2t. 

An inductive argument based on the dimension of 5ft suffices to re­
duce the proof of the principal theorem to the case 5ft2 = 0. For the 
preliminaries disposed of in this section allow us to use the argument 
of the associative proof [l, p. 47]. 

3. The case 5ft2 = 0. In §4 we shall prove the principal theorem for 
2Ï having a unity element, with 5ft2 = 0 and 21— 5ft a split algebra (that 
is, either a total matrix algebra or a Cay ley-Dickson algebra with 
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divisors of zero). At this point let us assume this result and show how 
the case 5ft2 = 0 of the principal theorem may be proved. 

First the theorem may be reduced to the case where 21 has a unity 
element. If 21 has no unity element, adjoin a unity element e to obtain 
2Ii = eg+2I. Then 2Ii is alternative. Also the radical 5ft of 2t is the radi­
cal of 2li. For 5ft is a nilpotent ideal of 2li and is therefore contained in 
the radical 5fti of 2li. Conversely if a,\ is in 5fti, then a%=ae+a for a in 
$, a in 21, and there exists an integer / such that a\=ate+a' = 0 for 
a' in 21. Hence a ' = 0, a = 0, ai=a is in 21, 5fti=:2l. Then 5fti is a nil-
potent ideal of 21, 5fti S 5ft. If we can obtain a Wedderburn decomposi­
tion 2ti = ©i+5ft of 2li, we have 2t = ©+5ft where © = ©1^21^21-5ft. 

Throughout the remainder of this paper we assume that 2Ï has a 
unity element ey and that 5ft2 = 0. We denote residue classes modulo 
5ft by the customary bracket symbol [ ]. 

LEMMA 3. If [wi], • • - , [u8] are pairwise orthogonal idempotents 
in 2t — 97:, there exist pairwise orthogonal idempotents eu • • • , es in 21 
such that 

(15) [d] = [iii], i = 1, • • • , s. 

Furthermore, if [e]= [ui]+ • • • +[w s ] , then e = ex+ • • • +es. 

We prove the first assertion by induction. The element 

(16) e\ — 3ui — 2ui 

is an idempotent in 21. For, since u\ — U\ is in 5ft, 5ft2 = 0, we have 
(ul — ui)2 = 0, and e\ — e\ by (16). Also 

(17) [*] = [«,] 

by (16), so that ei^O, and we have proved the case 5 = 1. Il f\ is any 
idempotent in 21, write /o = e—/i, so the Peirce decomposition of 
2Ï relative to / i takes the form 

21 = /i2l/i + /i2l/o + /o2ï/i + /o2I/o, 

where products fiafj (i, j = 0, 1) for a in 21 are trivially seen to be 
associative. The f Mfi (i = 0, 1) are orthogonal subalgebras of 21. The 
corresponding Peirce decomposition of 21 — 5ft is 

a - 9i = [M(3i - 5») Lfi] + [Moi - ft) [ƒ«] 
+ [/o](3ï-9î)[/1]+[/o](3ï-9l)[/o]. 

We assume the existence of pairwise orthogonal idempotents 
£2, • • • , es in 21 such that [^ ]= [ui], i = 2, • • • , 5, and write / i = 02 
+ • • • + £ « • Then [^x] is orthogonal to [/ i]= [^2]+ • * • + [u8], and 
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we have [ui] in [/o] (31 — 91) I/o}. Hence we may choose U\ in the sub-
algebra/03l/o of 31, so that e\ in (16) is in/03l/o and is therefore orthog­
onal to / i = e2+ • • • +es. That is, ex, £2, • • • , e8 are pairwise 
orthogonal idempotents in 31, (15) holds, and the inductive proof is 
complete. Since ei+ • • • +e8 is idempotent, e — (ex+ • • • +es) is 
either zero or idempotent. But [e]= [ux] + • • • + [u8] implies that 
e — (ei+ • • • +es) is in 5ft and cannot be idempotent; hence 
e = e i+ • • • +es. 

The reduction of the principal theorem to the case 31 — 5ft simple is 
now easy. Let 3t —5ft = 33i© • • • ©S3S for simple algebras 93*. By 
Lemma 3, there exist pairwise orthogonal idempotents et- in 31 such 
that the unity element of 33» is [et]. In the refined Peirce decomposition 

(is) « = £«</ (f, y = 1, •••,*) 
we have 3I»j-= 6*2tei (associative products!), and the radical 5ft; of 31»; 
is the intersection of 5ft and 21™ [9, §§4, 5]. It is easy to see that 31 « 
— 5ft;==33;. If we have Wedderburn decompositions 31;; = ©i + 5ft*, 
©»==93», then (since the subalgebras 31™ of 31 are pairwise orthogonal) 
the sum of the subalgebras ©»• of 3Ï is the direct sum © = © ! © • • • 
©@ s^3t-5ft , and we have 3l = ©+5ft. 

We can now prove the principal theorem. Since 31 —5ft is separable, 
there exists a splitting field $ such that (31 — 5ft )$ = 3K$ — 5ft$ is a direct 
sum of split algebras. Then 5ft$ is the radical of 31$ (since it is a nil-
potent ideal containing the radical). By the result in the preceding 
paragraph, we may assume that (31 — 5ft)$ has only one simple com­
ponent (a split algebra). Then by §4 below, 31$ contains a subalge-
bra 33==(3l — 5ft)$. The remaining steps are those of the associative 
proof [l, p. 48], since no form of associativity is used there. 

4. The case 31— 5ft a split algebra. We assume throughout that 3Ï 
has a unity element e, and that 5ft2 = 0. Suppose that 3Ï —5ft is a total 
matric algebra 5Efts of degree s. Then the principal theorem is an im­
mediate consequence of Lemma 4, which we state in the following 
slightly more general form for use in the proof of Lemma 5. 

LEMMA 4. Let 31 — 5ft contain a total matric algebra $ft8 with unity ele­
ment [e]. Then 31 contains a total matric algebra 2ft of degree s with 
unity element e, and 2ft s is the image of 2ft under the homomorphism 
x-*[x] of Ronton-5ft. 

For let 2fts have basal elements [iiij] (i, i = l, • • • , s) with the 
customary multiplication table 

(19) [#<ƒ] [#*i] == £/[w»i] (Kronecker delta). 
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Then [e] = [^n]+ • • • + [^88], and by Lemma 3 there exist pairwise 
orthogonal idempotents en in 3Ï such that [#*•»•] = [en], e = en+ • • • 
+e88. In the Peirce decomposition (18) of 3Ï relative to this set of 
idempotents we have 31*7 = eu%e3'j. 

We may take Wii = en. Since [un] = [eu] [u%\] [en], we may also take 
un in 8t»i (i = 2, • • • , s), and similarly take U\j in 3Iii ( i = 2, • • • , s). 
I t follows from (19) that 

(20) UijUji = en + a;-

where a, is in $ftn3li;3lii^$ftn3ln since 

(2i) a,,»,* g su 
[9, equation (4.5.1)]. Put 

«1/ = («11 — «ƒ)«!ƒ, 0*1 = « a (f, J = 2, • • • , S). 

Then 617 is in 3In3lij ̂  SÏÜ by (21), and e*j is in 3ï*i. Since 

(22) (xayjkjZki = Xij(yjhZki) unless (i, 7, *) = (f, i, i) 

for xa^, y«0, 0a/3 in 3t«/3 [9, Theorem (4.7.1)], we obtain the formula 

(23) euen = on (j = 1, • • • , s). 

The case j = l of (23) is trivial, and for jj^l we have £1^1 
= {(eu-a^Ui^Uji^ (en-a^iuijUji) ^ (exi-a^ien+aj) ==en by (22), 
(20), and the fact that eu is the unity element of 3tu, while #ƒ = 0 since 

$n2=o. 
Define 

(24) ^ = eneij (i ?* j ; i, j = 2, • • • , 5) 

in 2(tt2tiy<a2l»7- Since [e,i]=[w*i] and [*iy] « [ e u - ay ] [«iy] = [wu] [uxj] 
= [wii], we have [0*7] = [#*v]. Note that (24) holds if i = 1 or7 = 1. Also 
(24) holds if i=j. For (e^i»)2 = 0*1 {(01*0*1)01»} = 0»i0i* by (23) and the 
Theorem of Artin; since [0*101*] = [un] = [en], we may apply the sec­
ond part of Lemma 3 to 31** to obtain 0** = 0*101*. Formula (24) is 
established for all i, i = l, • • • , s. Now 

(25) eijehk = 0 for / =̂  h. 

For 31*7-31̂  = 0 OVA) unless h = iy k=j [9, Theorem (4.5.3)]. But 
2 

(26) #»•ƒ = 0 for Xij in 31*/, i 7^ j 

[6, p. 132, formula (15")] , which disposes of the remaining case in 
(25). We have 

(27) eij-ejjc = en, 0/b/0?i = eui (j, k = 1, • • • , s). 
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For, since we have proved (23), we may take k^l. Then by (24), 
(6), (7), (23), and (25), we have 0i;0y& = ei;(eyieu) = («iy«yi)«i*— [eu, 
eju em] =eu-- [eu, eu, ejx] = eu — (eikeu)eji+eik(eueji) = eifc. The second 
equation in (27) is the reciprocal relationship. With (27) we can prove 

(28) eijûjh = ea (i, j , k = 1, • • • , s). 

For eijôjk = (eneu)ejk = en(euejk) — [en, eu, ejk] — eik — [eu, ejk, en] 
= eik — e\kei\-\-eu(ejkeii). If i = k, this gives e^ea — eH — en+eueji — eu; 
if iy^k, it gives eijejk — eik by (25). Equations (25) and (28) imply that 
the subalgebra 93? of 21 with basis e^ (i,j=l, • • • , s) is a total matric 
algebra, and the lemma is proved. 

Consider the total matric algebra SDÎ2 of degree two over g ; it is a 
quaternion algebra with divisors of zero.10 Taking the usual matric 
basis eij (i,j=l, 2) for 9ft2, the unity element is £11+022 and the involu­
tion q—>g = /(<?) (011+022) — <Z °f 3^2 is defined by 

(29) eu = eih eu = - eif (i 7* j ; i, j = 1, 2). 

The algebra © = 30^2+^50^2 with elements qi+wq2 (for qi in 9K2) and 
multiplication 

(30) (qi + wq2)(qs + ^ 4 ) = (gi#3 + M2) + w(gig4 + £3?2) 

is a Cayley-Dickson algebra (we have written w for z; in (5) and set 
7 = 1). Since the Cayley-Dickson algebra with divisors of zero is 
unique, it may be taken in this form. 

LEMMA 5. Let §1 — 9̂  = ©, a Cayley-Dickson algebra with divisors of 
zero. Then 21 = (Si+97: where C\=C. 

For we may take Ê in the form 6 = 93Î2+ M$D?2, where, for elements 
[q] in 5DÎ2, multiplication is given by (30) with brackets. By Lemma 4, 
21 contains a total matric algebra 5DÎ of degree two such that e is the 
unity element of 5DÎ and the matric basis en of 2JÎ gives the matric 
basis [eij] of 9JÎ2. Note that [g] = [g] for q in 5DÎ. In the proof of [5, 
Theorem 2], it is shown that the multiplication formula (5) follows 
from the alternative law and formulas v2 = ye, qv = vq for g in Q . 
Therefore, in order to prove the lemma, it is sufficient to show the 
existence of an element v not in 5DÎ such that 

(31) v2 = e, qv = vq for q in 9JÎ. 

Write 

(32) [fn] = [w] [en] for i * j (i, j = 1, 2). 

See footnote 4. 
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We may take fa in 2t»y (*Vj), for [c«]([/.-i][^y])= [e« ]([«;] [«>,•]2) 
= M[*««y/]=Hfo/M/*i] by (32), (30), (29). Now [«*][ƒ*] 
= k t ] ( M [*yy]) = - [w]( [*y»] [*yy]) = [0] implies that 

en/a = £/ (* ^ i ; *, i = *> 2) 

for Cy in SftHHyy. Write 

/^t*y = = jTt*y CijCj, 

Then ft,-y is in Stty, [ftiy] = [/»y], and 

(33) ejihij = *.-̂ y< = 0 (ijé j\ i, j = 1, 2). 

For ey»&*y = Cj — ejfaijCj) = Cy — (ey^y)cy = 0 by (22). Moreover, e*yCy 

— 6ij\&jijij) == \&ij6ji)Jij L î» î*> /üJ ==Jij~T~ [Jiji &jiy &ij J =zJij\\Jij^ji)^ij 

—fij(ejieij) = (fijeji)eij by (7), and we have A»y^i*-/o^"" { ( f a ^ O ^ y } ^ 

= 0 by (22). Now |>;y][>yt] = [/•y][fi»,]=ss [*« ] foi ] = fo»'] implies that 

HijUji '=: Ca ~j~ &% 

for a; in ^nS ï i i (î = l, 2). Since 5ft2 = 0, we have a? = 0, and 

(34) («« - a{) (en + at) = *« = (en + ai) (eu — a%). 

Write 

^12 = (^n — ai)hi2, p2i = fei. 

Then pij is an 2l;y, [pij] = [ƒ*/], and we shall prove 

(35) pupa = en (i y* j \ i, j = 1, 2). 

For pi2p2i= {(en-ai)h12}h2i = (en-a1)(hi2h2i) = («u—ai)(di+ai) =en 

by (22) and (34). But aihij = (hijhji — en)hij = hij(hjihij)—hij 
= hij(ejj-\-aj) —hij^hijaj, so that 

(36) pu = /?i2 — aihu = hu — 1̂2̂ 2 = 1̂2(̂ 22 ~ #2) 

and p2ipi2=:h2i{hi2(e22 — a2)} = (h2ihn)(e22—«2) = (022+^2) (£22—02) =^22 
by (22) and (34). I t follows from (33), (36), and (22) that 

(37) eijpa = £y^-y = 0 (i ^ j ; f, y = 1, 2). 

Finally write 

V = pi2 + p2l-

Then [«;] = \fu]+ [f21] = [w], and v2 = (P12+P21)2 = pnp2i+P12P21 = 0n 
+£22 = 0 by (26) and (35). For ̂ Vj we have env = en(pij+pji)=pij 
= (Pij+Pji)ejj^vejj; also (26) implies that (eij+pij)2 = eijpij+pijeij = 0 
so that eijV = eij(pij+pji)=eijpij~ --pijeij— ~-(pij+pji)eij== —veij by 
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(37). Hence qv = vq for all q in SDÎ by (29), and we have shown the 
existence of an element v in §1, not in 2)ï, satisfying (31). This com­
pletes the proof of the lemma, and of the theorem. 
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