A NOTE ON S-SPACES

E. G. BEGLE

An S-space is a normal topological space in which each covering by open sets has a refinement which is star-finite, that is, each set of the refinement meets only a finite number of sets of the refinement. Thus a compact (=bicompact) space is an S-space, and an S-space is paracompact [1].

In this note we discuss cartesian products in which one of the factors is an S-space. We show that if the other factor is compact, then the product is an S-space, and the dimension of the product does not exceed the sum of the dimensions of the factors. However, if both factors are S-spaces, the product need not be an S-space.

THEOREM. Let A be an n-dimensional S-space and B an m-dimensional compact space. Then $A \times B$ is an S-space and $\dim(A \times B) \leq n+m$.

By the dimension of a space we mean, of course, the Lebesgue dimension (cf. [2, p. 206]).

Let \mathfrak{W}_0 be an arbitrary covering of $A \times B$. We are going to construct a locally-finite cell complex, D, with dim $D \leq n+m$, a mapping f of $A \times B$ onto D, and a covering \mathfrak{Y} of D such that $f^{-1}(\mathfrak{Y})$ is a refinement of \mathfrak{W}_0 .

Let a be any point of A. Each point of $a \times B$ is contained in an open set of the form $U \times V$, U open in A, V open in B, such that $U \times V$ is contained in an open set of \mathfrak{W}_0 . For a fixed point $a \in A$, the set of all such V's is a covering of B, and hence a finite number of them, say $V_{a,1}, V_{a,2}, \cdots, V_{a,k(a)}$, form a covering \mathfrak{V}_a of B. Let U_a be the intersection of the corresponding U's.

The collection of all such sets U_a is a covering of A. Hence there is a star-finite refinement \mathfrak{U} of this covering whose order is no more than n+1. We may also assume [2, p. 210] that \mathfrak{U} is normal, that is, that there is a mapping ϕ of A onto $N(\mathfrak{U})$ such that each open set of \mathfrak{U} is the inverse image, under ϕ , of the star of a vertex of $N(\mathfrak{U})$.

We form a covering \mathfrak{B} of $A \times B$ as follows: each set U of \mathfrak{U} is contained in some U_a , and with each U_a is associated a covering \mathfrak{B}_a of B. Form the product of U with each set of \mathfrak{B}_a . The totality of these products forms \mathfrak{B} , and by construction, \mathfrak{B} is a refinement of \mathfrak{B}_0 .

Let θ be the mapping of $A \times B$ onto $N(\mathfrak{U}) \times B$ defined by $\theta(a \times b) = \phi(a) \times b$, where ϕ is the above mapping of A onto $N(\mathfrak{U})$. Each ele-

Received by the editors May 15, 1948.

¹ Numbers in brackets refer to the references cited at the end of the paper.

ment of \mathfrak{W} is thus mapped by θ onto an open set of $N(\mathfrak{U}) \times B$, so $\mathfrak{X} = \theta(\mathfrak{W})$ is a covering of $N(\mathfrak{U}) \times B$.

Now let u_1 be a fixed vertex of $N(\mathfrak{U})$ and let S_1 be the closed star of u_1 , and, inductively, let S_i be the closed star of S_{i-1} . Let $T_1 = S_1$ and let T_i , i > 1, be the closure of $S_i - S_{i-1}$, and let $R_i = T_{i-1} \cap T_i$.

Now $\bigcup_{i=1}^{\infty} S_i$ is a connected set which is both open and closed in $N(\mathfrak{U})$ and hence is a component of $N(\mathfrak{U})$. Since the constructions we make below can be made independently in each component, we may assume without loss of generality that $\bigcup_{i=1}^{\infty} S_i = N(\mathfrak{U})$.

Each vertex u of $N(\mathfrak{U})$ corresponds to an open set U of \mathfrak{U} and, as above, each U is contained in a set U_a to which there corresponds a covering \mathfrak{B}_a of B. Let \mathfrak{B}'_1 be a finite covering of B which is a common refinement of each \mathfrak{B}_a which corresponds to a vertex of T_1 . Let \mathfrak{B}_1 be a normal finite covering of B which is of order not greater than m+1 and which is a star-refinement of \mathfrak{B}'_1 , that is, each set consisting of an element \mathfrak{B}_1 together with all the elements of \mathfrak{B}_1 which meet it is in an element of \mathfrak{B}'_1 .

In general, having obtained \mathfrak{B}_{i-1} , we obtain \mathfrak{B}_i as follows: let \mathfrak{B}'_i be a common finite refinement of \mathfrak{B}_{i-1} and of each \mathfrak{B}_a which corresponds to a vertex of T_i . Let \mathfrak{B}_i be a normal finite covering of B, of order not greater than m+1, which is a star-refinement of \mathfrak{B}'_i .

Let C_i be the finite cell-complex $T_i \times N(\mathfrak{B}_i)$. Since \mathfrak{B}_i is a refinement of \mathfrak{B}_{i-1} , there is a projection π_i , a simplicial mapping, of $N(\mathfrak{B}_i)$ into $N(\mathfrak{B}_{i-1})$. For each i, identify the subcomplex $R_i \times N(\mathfrak{B}_i)$ of $T_i \times N(\mathfrak{B}_i)$ with the subcomplex $R_i \times \pi_i N(\mathfrak{B}_i)$ of $T_{i-1} \times N(\mathfrak{B}_{i-1})$. The result of these identifications is the cell-complex D. Since $N(\mathfrak{U})$ is at most n-dimensional, and $N(\mathfrak{B}_i)$, for each i, is at most m-dimensional, the highest possible dimension for a cell of D is n+m.

Since each \mathfrak{V}_i is normal, there is a corresponding mapping ζ_i of B onto $N(\mathfrak{V}_i)$. Let ζ be the transformation of $N(\mathfrak{V}) \times B$ onto D defined by setting $\zeta(p \times b) = p \times \zeta_i(b)$ for $p \in T_i - R_i$. Since each π_i is continuous, so is ζ . Now $f = \zeta \theta$ is a mapping of $A \times B$ onto D.

To construct the covering \mathfrak{Y} of D, let u be any vertex of $N(\mathfrak{U})$. Then u is in some R_i . Let v be a vertex of $N(\mathfrak{U}_{i-1})$, and consider $u \times v$ as a vertex of C_{i-1} . Let K be the star, in C_{i-1} , of $u \times v$. Then consider u as a vertex of T_i , and let v_1, v_2, \cdots, v_s be all the vertices of $N(\mathfrak{U}_i)$ which are mapped onto v by π_i . Let L be the union of the stars of $u \times v_1, \cdots, u \times v_s$ in C_i . Then the set $K \cup L$ of $C_{i-1} \cup C_i$ becomes, after the identifications made in defining D, an open set of D containing $u \times v$. The collection of all such sets constitutes the covering \mathfrak{Y} . Since each \mathfrak{V}_i is a star-refinement of \mathfrak{V}_{i-1} , it is easy to see that $\zeta^{-1}(\mathfrak{Y})$ is a refinement of \mathfrak{X} and hence that $f^{-1}(\mathfrak{Y})$ is a refinement of \mathfrak{V} .

It is now easy to finish the proof of the theorem. First we make a barycentric subdivision of D, thus obtaining a simplicial complex E. Let e_1 be a vertex of E, and let \overline{S}_i have the same meaning for E as S_i has for $N(\mathfrak{U})$ above. Next we subdivide \overline{S}_2 simplicially until the star of each vertex in the induced subdivision of \overline{S}_1 is contained in some element of \mathfrak{D} . Then we subdivide \overline{S}_3 simplicially, without introducing any new vertices in \overline{S}_1 , until each vertex of the induced subdivision of \overline{S}_2 has its star contained in some element of \mathfrak{D} .

Continuing in this fashion, all of E is subdivided in such a way that each cell of D is divided into a finite number of simplexes.

Now let \mathfrak{Z} be the covering of D by the stars of the vertices of the subdivision of E. By construction, \mathfrak{Z} is a refinement of \mathfrak{D} . Since each cell of D is of dimension at most n+m, the same is true of E and of its subdivision. Hence, order $\mathfrak{Z} \leq n+m+1$. Clearly \mathfrak{Z} is star-finite. Hence $f^{-1}(\mathfrak{Z})$ is a star-finite covering of $A \times B$, of order not greater than n+m+1, and a refinement of \mathfrak{W}_0 , which proves the theorem.

To show that the product of two S-spaces need not be an S-space, we appeal to an example, constructed by Sorgenfrey [4], of a paracompact space whose product with itself is not paracompact. It is only necessary to observe that this space is actually an S-space, as is easily seen by an inspection of his proof.

Finally, we remark that Hemmingsen [3] has shown that the dimension theorem holds for the product of two compact spaces, and Dieudonné [1] has shown that the product of a compact space and a paracompact space is paracompact. Thus, the only unsettled question in this direction is that concerning the dimension of the product of a compact and paracompact space. It is clear that the method used above cannot be used in this case.

BIBLIOGRAPHY

- 1. J. Dieudonné, Une généralization des espaces compacts, J. Math. Pures Appl. (9) vol. 23 (1944) pp. 65-76.
- 2. C. H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math. vol. 69 (1947) pp. 200-242.
- 3. E. Hemmingsen, Some theorems in dimension theory for normal spaces, Duke Math. J. vol. 13 (1946) pp. 495-504.
- **4.** R. H. Sorgenfrey, On the topological product of paracompact spaces, Bull. Amer. Math. Soc. vol. 53 (1947) pp. 631-632.

YALE UNIVERSITY