
THE SCHWARZIAN DERIVATIVE AND 
SCHLICHT FUNCTIONS 

ZEEV NEHARI 

It is customary to formulate the inequalities of the "Verzer-
rungssatz" type for analytic functions w—f(z), schlicht in the unit 
circle, with reference to a specific normalization. The two normaliza­
tions mainly used are: (a) f(z) is finite in \z\ < 1 , /(O) = 0 , /'(O) = 1; 
(b) ƒ(z) has a pole at 2 = 0 with the residue 1. If we want to obtain 
inequalities which are independent of any particular normalization, 
we have to use quantities which are invariant with regard to an 
arbitrary linear transformation of the z-plane. The simplest quantity 
of this type is the Schwarzian differential parameter 

/ w"\' 1 / w"\ 2 

also called the Schwarzian derivative of w with regard to z. 
It is easy to obtain an upper bound for {w, z) by a simple trans­

formation of the classical inequality | a i | = T valid for functions 
w=zf(z) =3""1+ao+#i3+ • • • schlicht in the unit circle. Indeed, ap­
plying this inequality to the coefficient of z in the expansion of the 
schlicht function 

/'(*)(1 - h | 2 ) 1 _ 1 ƒ"(*) , , 
g{z) ~ ƒ((* + *)/(i + **)) - fix) ~ 7 + x ~ 7 7(xJ{1 ~ '*'2) 

r/f"(x)\' i/ƒ"(*) \ n 
i\f(x)) 2\f(x)j y 

(1*1 <1), 
we obtain | {)w,z}\ = 6 ( 1 - \z\ 2)~2. 

We shall now show that by replacing the number 6 in this in­
equality by 2, this necessary condition for the schHchtness of ƒ(z) in 
| z\ < 1 becomes sufficient. 

THEOREM I. In order that the analytic f unction w=f(z) be schlicht in 
\z\ < 1 , it is necessary that 

I { w> z \ I ^ j — j — 
1 l M (1 - | s | 2 ) 2 

{ -aH^mi^) - - !^ ) \*+ 
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and sufficient that 

PROOF. By the classical theory of differential equations, the gen­
eral solution of the differential equation 

(3) {w,z}/2 = p(z) 

is of the form w~yi/y2, where yi and y2 are two linearly independent 
solutions of the linear differential equation 

(4) y" + p(z)y = 0. 

To prove that the condition (2) entails the schlichtness of w=f(z) in 
\z\ < 1 is therefore equivalent to showing that the ratio yi/y2 of two 
solutions of (4) is schlicht in \z\ < 1 if p(z) is subject to the inequality 

(5) I Piz) I g 
2^2 (i-M2) 

Now it is easily seen that the schlichtness of y\/y% can be expressed 
in a different form which is much easier to handle. In order that the 
ratio of two linearly independent solutions of (4) be schlicht in a 
certain domain, it is necessary and sufficient that no solution of (4) 
vanish there more than once. Indeed, if 

3>i(*i) 3>ife) 
= = a, 

yzizi) 3 (̂22) 
then 

yi(zi) — ay2(«i) = 0, yi(z2) - ay2(z2) = 0, 

that is, the solution 3/1(2) — ay2(z) of (4) vanishes at the two points 
Z\ and 02. Our task is therefore reduced to showing that no solution of 
(4) can vanish in \z\ < 1 more than once if the condition (5) holds. 

For this purpose, we multiply equation (4) by ydz and integrate 
from z\ to 02 ( |s i | < 1 , \z*\ <1) . This leads to 

yd(y')+\ p\y\*dz~0, 
Z\ J Z\ 

whence we obtain by partial integration 

ƒ» 22 __ /* 22 

l / h f e + l p\y\*dz = 0, 
Z\ J Z\ 



1949] THE SCHWARZIAN DERIVATIVE AND SCHLICHT FUNCTIONS 547 

the "Green's transform" of (4). 
If y(zi) —y(z2) = 0, we have 

ƒ• «2 / » 32 

\y>\*dz=\ p\y\Hz, 
an identity fundamental in Hille's investigations on the zero-free 
regions of the solutions of (4) [ l ] . 1 

In view of the foregoing, Theorem I will be proved if we can show 
that (6) cannot be true if p~p(z) is subject to the inequality (5). 
We may obviously confine ourselves to the case in which |j&i| = \z%\ 
= p < l without restricting the generality of the proof. It is even suffi­
cient to show the incompatibility of (5) and (6) for z% = — zh since the 
condition 

(7) | {w, »}| ^ (i-\z\y 

remains unaltered if z is made subject to any linear transformation 
z = k(a—x)(l— &x)~l(\a\ < 1 , \k\ = 1) which leaves the unit circle 
invariant. Indeed, any such transformation can be built up from two 
rotations of the type 2 = fcc(|&| =1) and a substitution 0 = (j3 — x) 
• (1 —jSx)"""1 with real j3. Now it is easily confirmed that 

(8) {w, x) = k2{w, kx} = k2{w, z} 

and 

(9) 
( 1 - / J 2 ) 2 I 0 - x \ ( 1 - / 3 2 ) 2 

1 j (1 - fix)* \ 1 - Px) (1 - (Sx)* { ' 

(8) shows that the substitution s = kx does not affect the inequality 
(7). The same is true of the substitution z = (]8—x)(l —/fo)-1 since, by 
(7) and (9), 

(1 - 182)2 . . . . r 1 - 02 

J W, X } = -j j— j W, Z } < 2 -j : 1 j 
1 " | 1 - / 3 * 1 * ' l " L | l - / 3 * | 2 ( l - | z | 2 ) 

,..2r I-P i2 2 

L| 1 -px\2- | / 3 - x | 2 J ( 1 - | * | 2 ) 2 

Since, by a substitution z = k(a—x)(l—ötx)~1, any two points 
2i, Z2(|zi|, |z2 | <1) may be transformed into two points symmetrical 
with regard to the origin and neither the schlicht properties of f(z) 

1 Numbers in brackets refer to the references cited at the end of the paper. 
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in |JS| < 1 nor condition (7) are affected by this substitution, it is 
sufficient for our purposes to consider the case 01= — s2, where z\ may 
obviously be taken positive. (6) takes in this case the form 

(10) C I y'\2dr = fPp\y\2dr (0 < p < 1). 

We shall now use the integral inequality 

J
1 u2dx c * 

< I u'Hx (u = u(x)), 
. 1 ( 1 - x*y J _ i 

which holds for continuous real functions u{x) which vanish at 
x=±l of the first order. (11) follows easily from the positive-
definiteness of the integral 

J
1 / xu V 

Expanding and integrating by parts, we obtain 

J
1 r xu2 1 1 r1(i + x2)u2 

u'Hx + — I dx 
1̂ L i - ^ J - i J-i(i-x2y 

/

x x2u2 

dx > 0. 
.1 (1 - x2)2 

u being 0(1— x) and 0(1 +x) at # = 1 and x= — 1 respectively, the 
integrals exist and the integrated part vanishes. Hence (11) follows. 
(11) is an inequality in the strict sense. Equality in (11) would imply 
the vanishing of the integral (12), whence u'= — xu(l— x2)~l, 
u = c(l—x2)1,2

t Since this function does not satisfy our hypotheses, 
equality in (11) is excluded. 

Substituting px for x in (11) we obtain the inequality 

ƒ ? u2dx rp 

< I u'2dx, 
,P(P2-X2)2 J-o 

valid for functions u(x) possessing zeros of first order at x = ±p . 
Writing now y = u+iv, we have |;y| 2 = w2+z>2, | y | 2 = z4+z4 and 

(10) takes the form 

/

p 2 2 r p 2 2 

(ux + vx)dx = I p(u + v )dx. 
-p J -p 

If p is subject to the inequality (5), we have 
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> p u2 -\- v2 rp u2 + v2 

/
p \ fp v> + vz c 

(1 - x2)2 J-P(p2 - oc2)2 
• dx. 

Since y = u+iv is supposed to have zeros of the first order at z = ±p , 
the same is true of u and v separately. Using (13), we obtain therefore 

/

" I r p u2 + v2 r p 2 2 

p(u2 + v2)dx\ < p2 I dx < I (ux + vx)dxf 
-*P I J ~p (P2 — #2)2 J -p 

which contradicts (14). We have thus proved that no solution of (4) 
can vanish in \z\ < 1 more than once if p{z) satisfies (5). As shown 
above, this is equivalent to the schlichtness in \z\ < 1 of the ratio 
w — yi/y2 of two independent solutions of (4). In view of the identity 
(3), this completes the proof of Theorem I. 

Replacing (11) by similar integral inequalities, it is possible to ob­
tain sufficient conditions for the schlichtness of w=f(z) in \z\ < 1 
which are different from (2). As an example, we prove the following 
theorem : 

THEOREM 11. If 

(15) | {w,z}\ < T T 2 / 2 

in \z\ < 1 , then w—f{z) is schlicht in the unit circle. The constant 
7r2/2 in (15) is the best possible. 

PROOF. AS shown above, it is sufficient to prove that the differential 
equation y"+py = 0, where p= {w, z}/2, cannot have a solution y 
which vanishes in \z\ < 1 more than once. 

Suppose now that y(zi) — y{z2) = 0. Using the identity (6) and tak­
ing as the integration path the linear segment connecting Z\ and 
Z2 (z = (zx+z2)/2+eidr), we obtain 

(16) f | y' \2dr = e~2ie f p | y \2dr, 2p = | *2 - *i |. 

Writing y = u+iv, we have y' = e~id(ur+ivr)> whence \y\ 2 = u2+v2
y 

\y'\2 = u*+v?. Using this, (16) takes the form 

(17) I {ur + Vrjdr = e I p(u + v )dr. 
J -p J -p 

We now use the inequality 

/

ir/2 p ir/2 

yHx < | y,2dx 
^r/2 « / - i r / 2 
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[2], which holds for a function y(x) which is continuous for —x/2 
^x^w/2 and has zeros of first order at x— ±w/2. (18) follows im­
mediately from the identity 

(y' + ytgx)2dx = I y'Hx + [y2tgx]^T/2 — I y2dx 
-x/2 J - i r /2 J - i r /2 

/

ir/2 y. TT/2 

;y'2d# — I y2dx, 
- r / 2 •/ - x / 2 

which also shows that equality in (18) can only occur for ^^c -cos x. 
Replacing the variable x in (18) by (w/2p)r, we obtain 

(19) 

valid for functions y vanishing of first order at r= ±p. 
Both u and v satisfy these conditions. In view of (3), (15) and (19), 

we therefore obtain 

e-2i6 Ç P p(u2 + V2)df k l f P ( M 2 + V*)df 
I J -p I 4 J _p 

2 Ç p 2 2 Ç p 2 2 

l p («r + tfr)^ < I (Ur + Vr)dr. 
J -p J -p 

This contradicts (17) and thus proves Theorem II . 
That the constant w2/2 in (15) is the best possible is shown by the 

function w=f0(z) =eT*(1+€)*, e > 0 . It is easily confirmed that 

, > / W"\' 1 / W"\2 IT2 

The period of/0(s) being 2(l + e)~1<2, it follows that fo(z) cannot be 
schlicht in the unit circle. 

For the applications it is more convenient to formulate Theorem 
II in a slightly different way. 

COROLLARY. The radius of univalence of the function w = ƒ(z) is at 
least equal to the smallest positive root po of the equation 

(20) p2M(P) = 7T2/2, 

where 

(21) M(p) = max | {w, z) | . 
I«I - P 
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Indeed, by (3), (15), (19), (20) and (21) we have, for p<p0i 

e-2ie C P p(u2 + v^dr g M(p) fP(u2 + v2)dr < — f (u2 + v2)dr 
I J _p I J _p 2p2 J „p 

/

P 2 2 

(«r + Vr)dr, 
-P 

which again contradicts (17). 
As an application of Theorem II , or rather the corollary, we show 

that the error-function 

w 
•/ o 

is schlicht in a circle with radius 

(22) po = (((TT2 + l ) 1 ' 2 - \)/2yi2 

around the origin. Indeed, 

{w,z} = - 2 ( l + 22) 

and, by the corollary, the radius of univalence of <j>{z) is therefore at 
least equal to the positive root of 

2P
2(1 + p2) = TT2/2, 

that is, (22). 
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