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1. Introduction. Let Jv(x) denote Bessel function of order v and let 
v>—\/2. The value of the integral 

ƒ
I 00 

Jv(ax)Jv(bx)Jv(cx) xl~vdx, 
o 

where a, b, c are positive parameters, was evaluated by Sonine [8, 
p. 411 J1 and given by his formula 

2„_iA2„-i 
(1.2) S(v;a,b,c)=* or 0, 

r(i/2)i> + i/2) w 
according as a triangle can, or cannot, be constructed with sides a, b, c* 
The area of the triangle is denoted by A. Derivation of (1.2) may be 
established by means of a limiting process from either Dougall's 
integral formula or Dougall's expansion formula, both of which in­
volve the product of three ultra-spherical polynomials [5, pp. 379-
382]. I t has further been remarked [5, p. 375] that a proof of Sonine's 
theorem (1.2) can also be given by a procedure similar to that 
employed for the proof of the latter of Dougall's results by making 
use of HankeFs inversion formula. 

In this paper, (a) we shall show the content of the previous remark 
with detailed explanations, (b) By use of the result (2.7) and Sonine's 
formula (1.2) a generalization of Sonine's integral (3.6) can be ob­
tained, (c) Similarly, a generalization of Dougall's expansion formula 
may also be derived, which will contain (3.6) as a limiting case. And 
(d) we shall further give an explicit expression of the generalization 
of Dougall's integral formula, whence by means of a limiting process 
we also get the same generalized Sonine's integral. For J> = 0, the well 
known Nicholson result [8, p. 414] can be displayed as a special case 
of (3.6). 

2. Derivation of Sonine's integral (1.2) by means of HankePs in­
version formula. We shall assume that the area of the triangle as 
constructed by the given lengths a, &, c is greater than zero. For the 
special case when the area A is zero, then we may replace the expres-
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sion A2""1 in the right member of (1.2) by 0, 1/2 and + oo for v> 1/2, 
*> = l /2 and z><l/2 respectively [7, p. 685]. When the construction of 
the triangle becomes impossible it is easy to show that the value of 
the integral (1.1) vanishes [8, p. 413]. 

Let us consider a plane triangle with two fixed sides /3 and 7, and 
that the angle 0 between /3 and 7 should vary from 0 to 71*. Then the 
opposite side a to the angle </> of the triangle can be evaluated from 
the cosine law, namely: 

(2.1) a2 = ]82 + 72 - 207 cos <j>. 

The addition theorem for Bessel function of order v [8, p. 363] gives 

(2.2) = 2T(iO 2^ (v + m) ~— Pm (cos 0), 
av

 m~o (Py)v 

which is valid for all values of j3t 7 and 0, and for all values of v with 
the exception of2 0, — 1 , —2, • • • . Hence we have by integration 

— — sin2" 4>d4> = 2"I> + 1) I sin2" $d<t> 

(2 3) ° "* ^y)V ° 

The above formula (2.3) holds true even when p = 0 (see footnote 2). 
Now we introduce a: instead of <j> as the variable of the integration. 

Since 

(2.4) 07 sin <J> = 2Ai, 

where Ai is the area of the triangle with sides a, |8, 7 ; and since 
187 sin <f)d<l>=ada, we find for the left member of (2.3) 

(2 .5) I sin2""1 <t> sin 0<ty = I AX ada. 

After this transformation, (2.3) can be written in the form 

v— 1 2v— 1 

(2.6) I — ada = J,(fi)J,(y). 
J ,„_„ r ( l /2 ) r (F + l/2)(a/37)" 

Put a = Rx, P — bx, 7 = ex, we obtain 

2 In case ^=0, the addition theorem is given by (2.2') J0(«) - I ^ ^ W - ^ W 
•cos m<t>, where eo^l; 6TO=2, m ^ l . By integration, we have (2.3') (l/ir)frJo(a)d4> 
**Jo(fi)Jo(y), which is indeed the particular form of (2.3) when v=*0. 
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ƒ•b+c 2V"1JV(RX)AIV"1 r °° 

, , x , — — RdR = j f(R)Jv(Rx)RdR 
16_cl r(i/2)r(, + i/i)(Rbcy J0 

= x~vJv(bx)Jv(cx), 

where A2 is the area of the triangle with sides R, b, c and where we set 
„_1 2 v - l 

2 A2 , , 
\b- c\^RSb + c, 

(2.8) ƒ(*) = r ( l / 2 ) I > + l/2)(Rbc) 

[ 0, R<\b- c\, 01 R> b + c. 

Now the f unction ƒ (R) as defined above in (2.8) satisfies the condi­
tion that 

f f(R)Rli*dR 
J 0 

exists and is absolutely convergent for v> —1/2. Therefore we can 
apply Hankel's inversion formula [8, p. 456] and have 

(2.9) 
S(v; a, b, c) = f xJ,(ax) < f f(R)J,(Rx)RdE.\ dx 

= 1 {ƒ(<* - 0) + /(a + 0)} = ƒ(«), 

provided that the positive number "a" lies inside the interval in 
which f(R) is of bounded variation. This is actually satisfied because 
of the fact that ƒ(R) has a bounded derivative for the whole interval 
except the end points R—\b — c\ and R = b+c, at which points the 
area of the corresponding triangle vanishes. 

3. Generalization of Sonine's integral formula. We are given four 
positive parameters a, b, c, d, say a^b^c^d and let 2<r = a+b+c+dt 

When a quadrilateral can not be constructed with lengths a, b, c, d 
as sides, the value of the integral 

(3.1) S{v\ a, by c, d) = I Jv(ax)Jv(bx)Jt,(cx)Jv(dx)xl~2pdx 
J 0 

may easily be shown to vanish [8, p. 413]. Moreover, from the well 
known asymptotic formula for Bessel functions [8, p. 199] 

/ 2 \ 1 / 2 / VT T \ / 1 \ 

(3.2) ««)-(-) » (*-T-T) + < W '-*-• 
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the principal part of (3.1) will become 

(—J f r ^ ' i c o s (at- — - — ) 
VTT/ (abed)1'2JO l \ 2 4 / 

( VTT 7 r \ / VTT 71* \ 
H 1 c o s \cl 1 

2 4 / \ 2 4 / 

( VTT 1T V j 
dt J > dt. 

2 4 / j 

We can point out without difficulty the conditions under which the 
integral (3.1) diverges. Recalling the identity 

( VIT 7T \ / VIT 7T \ 
m<k 1 c o s [ nà ) 

2 4 / V 2 4 / 

( VIT W\ / VTT 7T \ 
JHh 1 COS [ OÓ ) 

2 4 / \ 2 4 / 

= cos {(m + n + p + q)<f> - {2v + 1)TT} 

+ cos < (n + p + q — m)<j> — VK > 

(3.4) + cos <(p + q + m — n)<t> — vie > 

+ cos < (q + m + n — p)<f> — VK > 

+ cos <(m + n + p — q)<i> — VTT > 

+ cos (m + n — p — q)<f> 

+ cos (m + p — n — q)(j> + cos (m + q — n — p)<j), 

we readily see that, for the special case when ar = a, namely, a rigid 
quadrilateral with area zero, the integral (3.1) is properly divergent 
for J > < 0 ; however, for v^O, it converges (and =0) . We further note 
that for the case when (r~a-\-d = b+c, (3.1) diverges for z>^S0. 

For the subsequent considerations we shall assume that a quadri­
lateral is constructible, and notice that the construction may be 
arranged in several ways. Let us consider one of the arrangements, 
say, the quadrilateral is formed by sides a, &, c, d which are con­
nected with one another in the related order. One of the diagonals, 
which is denoted by JR, divides the quadrilateral into two triangles 
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AabR and AcdR. Since the diagonal R is of variable length, we let 
R = c+d—2t (or R = a+b — 2u) where/ (orw) is a variable. We further 
denote the area of the two triangles by AabR and ACdR respectively. 

For sake of definiteness, suppose c — d^a — b; when the equality 
sign is used we remember that v>0. Replacing b by c, and c by d 
in (2.7), multiplying both sides of the modified equation by 
x1~vJv(ax)Jv(bx) and then integrating with respect to x from 0 to 
oo, we obtain 

S(v; a, b, cf d) = J x1"vJv(ax)Jv(bx) 
Jo 

y J 2l> 1 

< | RdR\dx 
\ J c _ d T(l/2)T(v + l/2)(Rcd)' ƒ 

•ƒ. 

(3.5) 
2 rc+d AcdR 

T(l/2)T(r + l/2)(cd)> J-d R^1 

< f Jv(ax)Jv(bx)Jv(Rx)xl~vdx\dR. 

Here the interchange of the above integrations is permissible for 
v> —1/2, since the improper integral S(v; a, b, R) is uniformly con­
vergent in general with respect to R in the interval c — d to c+d; and 

i 
2 ƒ,(**) A*B 

KdK .dT(l/2)T(v+l/2)(Rcdy 

is a continuous function of R for the range c — d^R ^c+d [4, p. 473]. 
Write R = c+d — 2t and by Sonine's formula (1.2) we may rewrite 
(3.5) as follows: 

S(v; a, bt cf d) 

(3.6) =—7 z I ( ) dt, 
T{T(v+l/2)\*(abcdyJ0 \ AaöRAcdR ) 

which we shall call the generalized Sonine's integral formula. 

4. Generalized DougalPs expansion formula. Similar to the re­
lated line of reasoning, we use instead of (2.7) the known result 
[5, p. 378] 

ƒ 
(\), N / . . „ . 1 - 2 X X - 1 . 2X 

Pn (cos a) (sin a sin p sin 7) E sin ada 
(4.1) "M r l , , 

. . Yin + 1) (X) (X) 
" 2 r (X)^^TT7T~JV(cos/3)P„ (cos?), 

r(w + 2X) 
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where P^x) (cos 0) denotes ultra-spherical polynomial. In (4.1) we 
note that /3 and y are two fixed sides of a spherical triangle: 0 </3 <7r, 
0 < 7 < 7 r ; a is the third side; that 

OJ + /3 + Y /3 + 7 — a 7 + a -- 0 a + /3 — y 
(4.2) E = sin sin sin sin ; 

2 2 2 2 

and that £ = j 3 + Y if j8+7^7r; or B^2ir—f5—y, if /3+7>7r. 
Suppose a k j S ^ y ^ 5 , and for sake of definiteness let 7 — 5^ce —j8. 

For the latter relation when the equality sign is used, we consider 
only \ > l / 2 . Now replacing ft 7, a, E, B in (4.1) by 7, 8, p, £7$p, 3 ' 
respectively; multiplying both sides of the modified equation by 

(T(n+ l))2 (X) (X) 

< * + X) 1 J , o f̂ P* (C0S ̂  (C0S #' 
ir(w + 2x); 

and then summing with respect to n from 0 to 00, we finally ob­
tain 

D2(X; a, ft 7 , ö) 

=f>+A)r(w+n8 

CTo l r (n + 2X) ƒ 
•P„ (cos a )P n (cos 0)Pn (cos y)P„ (cos 5) 

4 {r(X)}-£(» + x ) { ^ ^ } V » ( c o . « ) P Î W 

J 7-Ô 

(4.3) 2 l S ( r ( ^ + 2X) 

(sin p sin 7 sin o) -E7aPPn (cos p) sin pap 
5 

1 ( / \ ) O C B' / . . . \ X - 2 X T^X--1 • 2X 

= — {T(X) }~ 2 I (sin p s in 7 s in ô) EySp s in p 
2 J 7__8 

r(» + 1) ) 2 

l«-o lr(w + 2x)j 

•P» (cos a)Pn (cos (f)Pn (cos p) > dp. 

Here the interchange of the infinite series and the integration is per­
missible for X>0, since the infinite series is uniformly convergent with 
respect to p in the interval between 7 —S and B'; and the integral 

l E78p s in pdp 
7-s 
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is absolutely convergent [2, p. 495]. By the result of Dougall's ex­
pansion formula we may rewrite (4.3) as follows: 

A(X; a, p, y, d) = 2"1-2X7r{r(X)}~6{sin a sin 0 sin y sin ô}x~2X 

(4.€ . r /^ax-*. 
7_6 ^ sur p 7 

which we shall call the generalized Dougall's expansion formula. We 
shall remark that by means of a limiting process [5, p . 380] the gen­
eralized Sonine's integral formula (3.6) may also be derived from 
(4.4). 

5. Generalized Dougall's integral formula. Bailey [l, p. 284] has 
attempted to generalize Busbridge's formula [3, p. 95], which in­
volves products of Hermite polynomials, by evaluating the integral 

Z>i(X; m, », p, q) 

(5-,) c- v-,"rf,(»)rf,(«)Piu(*)pr(*)««. 
He did not give an explicit, elementary expression for this generalized 
integral, but remarked that the result is complicated and involves a 
well-poised series of the type u-Fio with unit argument. 

By the known result of Dougall's integral formula [5, p. 374] we 
immediately have 

(5.2) Pp (x)Pq {%) = ZjTr Pp+q-.2r(x), 

where 

cx;p.«) __ p + q- 2r + \ T(p + q - 2r + 1) 

~ p + q-r + \ T(p + q - r + 1) 

T(p + q - r + 2X) 

(5.3) 
T(p + q - 2r + 2X) 

/p-r + \ - l\/q - r + X - l\/r + X - 1\ 

/ƒ> + q - r + X - 1\ ' 

\ * + « - r ) 
Now by an analogous method, as employed by Bailey in dealing with 
Hermite polynomials, we may obtain an explicit expression for the 
value of the integral (5.1), namely: 
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Z>i(X; m, n, p, q) 
2i-2x wànuç*-m) T r(*-r+2X) p+q-2r+\ 

(5.4) 

{r(X)}2 ZZ k-r+\ r(*-r+l) p+q-r+\ 

T(P+q-2r+l) T(p+q-r+2\) 

' T(p+q-r+l) T(p+q-2r+2\) 

/p-r+\-l\/ q-r+\-l\/r+\-l\ 

/p+g-r+\-l\ 

\ P+q.-' ) 

/k-m-r+\-l\/k-n-r+\-l\/k-p-q+r+\-l\ 

\ k—m—r / \ k—n—r J\ k—p—q+r ) 
/k-r+\-l\ 

\ k-r ) 
21—2X min (q,k— m) 

=TiwF 5 W;m,n,p,q), 
where we let 2k~m+n+p+q and tnè>n*zp^q, k being an integer 
not less than m ; otherwise the integral is zero. For X = 1/2, the explicit 
expression for the integral involving product of Legendre polynomials 
was given by Shabde [6, pp. 31-32]. We may further remark that by 
means of a limiting process [5, p. 379], (5.4) will contain the same 
generalized Sonine's integral formula (3.6) as a special case. 

We finally note that Bailey [l , p. 282] also remarked that for any 
four positive numbers, say rn^n^p^q, there are several ways of 
obtaining the value of the integral (5.1). I t is easy to show, for ex­
ample, with n and q interchanged in the related order and following 
the analogous argument for the evaluation, that we have 

# i ( X ; m, n, p , q) = Z>i(X; mf q, p , n) 

(5.5) 21~~2X k~m 

= ( m v i , E Fr(\;tn,q,p,n). 
\ I- yh) ] r«*max(0,fc-m—q) 

Making use of a limiting process and particularly for the case when 
p = 0, we have, if a i ^ a 2 e # 3 e a 4 > 0 , and a> = a2+as— 2#, 

I I Jo(aJ)tdt 
(5.6) J *=1 

1 /•*-<*! a2 + az — 2% 
= I dx. 

2T2 
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We obtain 

4 /» min(a2+a3 ,a1+a4) 

5(0; ah a2i az, a4) = — I [{(ai + cz4)
2 — co2} 

(5 7) * • /* -« . 
• {(<*i - O 2 ~ co2} {(a2 + asy - co2} {(a2 - a3)2 - co2} h^Wco, 

which is the well known Nicholson's result [8, p. 414]. 
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