COMBINATORIAL HOMOTOPY. I
J. H. C. WHITEHEAD

1. Introduction. This is the first of a series of papers, whose aim is
to clarify the theory of “nuclei” and “n-groups” and its relation to
Reidemeister’s! Uberlagerungen. Here we give a new definition of
“n-groups,” or n-types as we now propose to call them. This is stated
in terms of (z—1)-homotopy types, which were introduced by R. H.
Fox.? In a later paper we shall show that this is equivalent to the
definition in terms of elementary transformations, which was given
in [1]. The series of n-types (=1, 2, - - - ) is a hierarchy of homot-
opy, and a fortiori of topological invariants. That is to say, if two
complexes,® K, L, are of the same #n-type, then they are of the same
m-type for any m <n, where n £ » and the «-type means the homot-
opy type. If dim K, dim L £# then K, L are of the same homotopy
type if they are of the same (n-+1)-type. Two complexes are of the
same 2-type if, and only if, their fundamental groups are isomorphic.
Moreover any (discrete) group is isomorphic to the fundamental
group of a suitably constructed complex. Therefore the classification
of complexes according to their 2-types is equivalent to the classifica-
tion of groups by the relation of isomorphism. Thus the #n-type
(n>2) is a natural generalization of a geometrical equivalent of an
abstract group.*

Following up this idea we look for a purely algebraic equivalent of
an n-type when z > 2. An important requirement for such an algebraic
system is “realizability,” in two senses. In the first instance this means
that there is a complex which is in the appropriate relation to a given
one of these algebraic systems, just as there is a complex whose funda-
mental group is isomorphic to a given group. The second kind, whose
importance is underlined by theorems in [5; 6] and in this paper, is
the “realizability” of homomorphisms, chain mappings, etc., by maps
of the corresponding complexes. Thus realizability means that the
algebraic representation is not subject to conditions which can only
be expressed geometrically.

An address delivered before the Princeton Meeting of the Society on November
2, 1946, by invitation of the Committee to Select Hour Speakers for Eastern Sec-
tional Meetings; received by the editors July 19, 1948,

1See [1], [3] and [8, p. 177]. Numbers in brackets refer to the references cited
at the end of the paper.

2 See [9, p. 343] and [10, p. 49].

3 I.e., CW-complexes, as defined in §5 below.

4 Le., the class of groups which are isomorphic to a given group.
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What has been achieved so far is a purely algebraic description
of the homotopy type of any 3-dimensional complex (see [3]) and of
any finite, simply-connected, 4-dimensional complex. An account of
the former will be given in Paper II of this series and of the latter in
[5]. This and Theorem 6 below lead to an algebraic description of the
3-type of any complex and of the 4-type of any simply-connected,
finite complex. The theorem on the realizability of chain-mappings,
which applies to the 3-dimensional complexes, will be generalized to
what we call J,-complexes, which are defined in §3 below.

The algebraic apparatus used in [5] and in Paper II is inadequate
for the classification of homotopy classes of maps of such complexes.
Each homotopy class of maps induces a unique equivalence class of
algebraic maps. Moreover each algebraic map, of the appropriate
algebraic type, has a geometrical realization. But in general the
homotopy class of the latter is not unique. For example in the case of a
simply-connected, 3-dimensional complex our algebraic system sim-
ply consists of the ordinary chain groups and all maps of a 3-sphere
in a 2-sphere lead to the same equivalence class of chain mappings.
Thus our results are complementary to much of the recent work on
the algebraic classification of mappings (e.g. [11]).

In this presentation we abandon simplicial complexes in favor of
cell complexes. This first part consists of geometrical preliminaries,
including some elementary propositions concerning what we call clo-
sure finite complexes with weak topology, abbreviated to CW-complexes,
which are defined in §5 below. There are two main reasons why we
do not confine ourselves to finite complexes. The first is that we want
to include such simple spaces as open manifolds or, more generally,
infinite but locally finite complexes. The second is that we have a
great deal to do with covering complexes. We do not restrict our-
selves to locally finite complexes because this restriction would be
troublesome when considering “mapping cylinders” of infinite com-
plexes. Also we want to allow for such operations as shrinking an
infinite subcomplex (e.g., a tree containing all the 0-cells) into a
point.

We recall from [6] that a space, P, dominates a space, X, if, and
only if, there are maps, N: X—P, N :P—X, such that AA>~1. We
show that the theorems in [6] can be extended to non-compact
spaces, which are dominated by CW-complexes. To do this we give
a new and possibly® more restrictive definition of #-homotopy. Ac-
cording to Fox, maps f, g: X—Y, of any space X in a space Y, are
n-homotopic, written fo~,g, if, and only if, fo~g¢, for every map,

& See §7 below.
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¢:K*—X, of every finite simplicial complex, K*, of at most # dimen-
sions. We alter this by defining f~~,g if, and only if, f¢p~g¢ for every
map, ¢:K"—>X, of every CW-complex, K*, of at most # dimensions.
As in [6] we describe a map, f: X— Y, as an n-homotopy equivalence
if, and only if, it has an n-komotopy inverse, meaning a map, g: Y—X,
such that gf~,1, fg~,1. A homotopy equivalence is similarly defined
in terms of ordinary homotopy. We shall use the symbol

X=7Y

to mean that X and Y are of the same n-homotopy type (i.e. there is
an n-homotopy equivalence f: X—Y) and X=Y will mean that X
and Y are of the same homotopy type.

Let a be the class of all connected spaces, each of which is domi-
nated by some CW-complex.® Let aoCa be the subclass consisting of
spaces which are locally simply-connected in the weak sense. That is
to say, if X Cay there is a basic set of neighborhoods in X, such that
any closed curve in one of these neighborhoods is contractible to a
point in X. The universal covering space, X, of such a space has the
usual properties. If X is dominated by a CW-complex of finite dinien-
sionality we shall use AX to denote the minimum dimensionality of
all CW-complexes which dominate X. If none of the CW-complexes,
which dominate X, has finite dimensionality we write AX =®. We
restate the theorems in [6], which now refer to spaces X, YCa and
to the new definition of n-homotopy. Let f:m,(X)—m.(Y) be the
homomorphism induced by a map f:X—Y (n=1, 2, ) and let
N=max (AX, AY)=< .

THEOREM 1. The map f: X—Y is a homotopy equivalence if, and only
ify, faimn(X)—w.(Y) s an isomorphism onto for every m such that
1=a<N-+1.

THEOREM 2. The map f:X—Y is an (N —1)-homotopy equivalence
if, and only if, f. is an ssomorphism onto for every n such that 1 =n <N.

Let X, YCap and let X, ¥ be the universal covering spaces of X,
Y, with base points o€ X and y,=fx,E Y. As explained in [6], the
map f:X—Y induces homomorphisms H,(X)—H,(¥), where H,
indicates the #th homology group, defined in terms of singular cycles.
The argument given in [6] shows that H,(X) =0, H,(¥)=0if »>N.

6 A space in a must satisfy the usual union and intersection axioms for closed and
open sets but need not satisfy any separation axioms. For example, a single point
need not be a closed subset. It follows from (M) in §5 below that any connected
CW-complex is arcwise connected. Hence it is easily proved that every space in « is
arcwise connected.




216 J. H. C. WHITEHEAD [March

THEOREM 3. The map f: X— Y is a homotopy equivalence if, and only
if, each of the induced homomorphisms fi:m(X)—m(Y) and H.(X)
—H,(YV) is an isomorphism onto.

Let N< .

THEOREM 4. The map f: X—Y is an (N —1)-homotopy equivalence if

(a) each of the induced homomorphisms fiim(X)—mi(Y), H.(X)
—H,(Y) is an isomorphism onto, for n=0, - - - , N—2, and also

(b) the induced homomorphism Hy_(X)—Hy_1(¥) is onto and

(©) fa—1:my1(X)—>rN_1(Y) s an isomorphism into.
Conversely if f: X—Y is an (N —1)-homotopy equivalence,” so is the
lifted map, f: X—V, and H,(X)—H.(Y) is an isomorphism onto for
n=0,:--, N—1,

2. n-types. Let K, L be CW-complexes. A map f:K—L is said to
be cellular if, and only if, fK*CL" for each =0, where K», L* are
the » sections of K, L. A homotopy f:: K—L is said to be cellular if,
and only if, the maps fq, f1 are cellular and f,K"CL**+! for each # =0.
According to (L), in §5 below, any map K—L is homotopic to a cel-
lular map and if fo~f1: K—L, where f, fi are cellular, then there is a
cellular homotopy f;: K—L. Let fo, fi:L—X be maps of L in any
space X and let fo~,f1. Then fop~fi¢p for any map, ¢:K"—L, of any
CW-complex, K*, of at most #» dimensions. In particular folL"
'zflIL”. But ¢ is homotopic to a cellular map, ¢’: K»—L, and if
fo|L"ﬁf1|L" we have fop~fop'~fip'~fip. Therefore fo=<.f1 if, and
only if, foIL"zfllL". If dim L=#n then fy=~,fi obviously means
fo=f1. If will be convenient to allow » to take the value « on the
understanding that L*=L and that fi~,f; and K=,L mean fo>~f
and K=L.

We shall say that CW-complexes, K, L, are of the same n-type
(1=n= ») if, and only if, K*=,,L" If dim K, dim L =#, then
Xrtl=X?»=X(X=K or L) and K**'=,L"*" means K=L.

THEOREM 5. If K and L are of the same n-type (2=<n= ) then
they are of the same m-type for any m <n.

Let f:K»—L" be an (n—1)-homotopy equivalence and let g:L»
— K" be an (n—1)-homotopy inverse of f. We may assume that f and
g are cellular maps and also that there are cellular homotopies,
£ii Kn1—Kn, ny: L'—Ln, such that £o=gf| K, £,=1, no=fg| L*,

7 By taking X to be a 2-sphere and Y to be a complex projective plane one sees
that f: X— Y need not be an (V—1)-homotopy equivalence (N=4) even though the

induced homomorphisms f; and H,,(X V—H,(Y)are isomorphisms onto for n=1, « « «,
N-1.
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m=1, where 1 stands for both identical maps K*'—K*, L*1—L",
Let f»: Km—Lm™, gm: L™— K™ be the maps induced by f, g (i.e. f*p =fp,
gmq=gq, where p&Km, g&L™). Since £Km1CK™ it follows that
g"fm| Km1~1 (in K™). Therefore gnfn~, 1. Similarly frgm=~, i1,
whence K™=, L™ and the theorem is proved.

It follows from Theorem 5 that the n-type is an invariant of the
homotopy type (i.e. is the same for two complexes of the same homot-
opy type). It is a fortiori a topological invariant. Since a CW-
complex is locally contractible, according to (M) in §5 below, each
component is arcwise connected. Therefore two CW-complexes have
the same 1-type if, and only if, they have the same cardinal number of
components. It also follows from the results in §5 below, and the
argument used in the finite case,® that connected CW-complexes,
K, L, have the same 2-type if, and only if, 7 (K) ~m(L). We now as-
sume, until §4, that any given complex is connected and that # =2
in statements concerning z-homotopy and n-types.

These ideas provide a generalization of a result due to Hopf,? on
the relation between the fundamental group and the second homology
group of a polyhedron. For let X be any space and let G,(X) be the
residue group

Ga(X) = H,(X) — Si(X),

where S,(X)CH,(X) is the sub-group whose elements are repre-
sented by spherical cycles. Let f, g: X— Y be maps of X in a space Y.
It may be proved that,! if f~, g, then f and g induce the same
homomorphism G.(X)—G,(Y). It follows that, if X=,,Y, then
G.(X) =G,(Y). In case X, ¥ are CW-complexes this also follows
from:

THuEOREM 6. If K}=,1K} then
KiUzi= K;\U3Z,

where 27 (1=1, 2) is a set of (disjoint) mn-cells, whose closures are n-
spheres, attached to K} at a single point, Z} being a finite set of cells if
K%, K} are finite complexes.

This is Theorem 13 in!! [1], restated in terms of CW-complexes

8 See [16, pp. 217, 213], and [18, 3.1, 3.2 on p. 29].

9 See [17] and [18]. See also [1, Theorems 12 and 13, pp. 266, 269].

10 This is easily proved on the assumption that any homology class in Ha(X) has
a representative (singular) cycle, which is also a continuous cycle (i.e., the image ina
map, K»—X, of a cycle carried by a finite, #n-dimensional, simplicial complex K*).

1 1], p. 269 for finite and p. 324 for infinite complexes.
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and the new definition of the n-type. We shall give another proof in a
later paper.
Another corollary of Theorem 6, and of Theorem 19 in [1] is:

CoRrOLLARY 1. If K1=,1K} then'?

Ta(KY) + My ~ 7,(K2) + Mo,

where -+ indicates dirvect summation and M; is a free Ri-module, R;
being the group ring of wi(K;) with integral coefficients.

Another obvious corollary of Theorem 6, which is also easy to
prove directly, is:

CoROLLARY 2. If K} and K3 are of the same n-type, so are their uni-
versal covering complexes, K and K.

Hence, using G,(X) to mean the same as before, with X = K}, we
have:

COROLLARY 3. If K}=,_1K} then G,(K}) =G,(K3).

3. Jm-complexes. Let K be a (connected) CW-complex and let a
O-cell, € be taken as base point for all the groups 7, (K", K1),
m(K7) (=2, r=1). Let pp,=m, (K", K*1) and let j,:m.(K")—p, be
the homomorphism induced by the identical map (K*, ¢%)— (X",
K1), We shall describe K as a J,-complex if, and only if, j, is an
isomorphism into p, for each =2, - - -, m. Obviously K is a Ju-
complex if, and only if, K™ is a J,-complex. We shall prove that the
property of being a J,-complex is an invariant of the m-type. That
is to say, if K™=,,1L™ and if K is a J,-complex so is L.

Let Br:pn—ma1 (K™ 1) (n=2) be the (homotopy) boundary homo-
morphism and let

dn = jn-lﬂnzpn — Pn—1,

where py=m1(K') and j1=1. Then d,j,=0 and d.d,41=0 since B,j.=0.
Let ¢,:m,(K* 1) >, (K") be the homomorphism induced by the
identical map K*»!—K".

W(E now prove two theorems which are closely related to Theorem
1in [25].

THEOREM 7. The homomorphism j,:m.(K")—pa,ts into d;'(0) (n22).

12 In each of Corollaries 1 and 3 the symbol =~ means that there is an operator
isomorphism (onto), which is defined in terms of the isomorphism, m(K})—m(K3),
induced by an (n—1)-homotopy equivalence K}—Kj;. Compare Corollary 3 with
Theorem 28.1 on p. 414 of [13].
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It is:
(a) an isomorphism (into) if, and only if, t.wa(K* 1) =0 and is
(b) onto dy '(0) if tp1mps(K"2)=0.

The fact that j,m.(K™) Cdy'(0) follows from the relation d,j,=0.
The assertion (a) follows at once from the exactness of the homotopy
sequence

3.1 w(KY) S a(K7) D om(kr, KeY) D or (K,

with »=n. Let a€d;'(0) be given (2=2). Since d,a=j,-18,a=0 it
follows from the exactness of (3.1) with r=#—1 and 7, (K°) =m¢(K?)
=0 in case n=2, that B.aE€Et,am,1(K"?). Therefore B.a =0 if
tn—1Tn1(K"2) =0 and it follows from the exactness of (3.1), with
r=n, that a&j,m,(K"). This completes the proof.

Since m3(K') =0 it follows from Theorem 7 that any complex is a
Jo-complex. Also 7, is onto d3'(0) =8;'(0) by the exactness of (3.1)
with »=2. In general we have:

COROLLARY. 4 complex, K, is a Jn-complex if, and only if, t,m, (K" 1)
=0forn=2, - - - ,m. In this case j, is onto d;*(0) forr=2, - - - ,m+1.

Let m1(K)=1. Then the groups p, (#>2) and p;, ps made Abelian
may be taken as chain-groups.’® The homology group, H,(K), may
be defined as the residue group

(3.2)  HuK) = dy (0) = duy1pms = du (0) = jubuiions.

It follows from (L), in §5 below, that we may take

(3.3) Ta(K) = mo(K™) = m(K"™) — Bat1pnt1.
Therefore j, determines a homomorphism j}:7,(K)—H,(K).

THEOREM 8. If mi(K) =1 and if K is a Jn-complex, then ji:ma(K)
—H,(K) is an isomorphism onto for n=1, - - - , m and ji,, is onto.

This is an immediate consequence of (3.2), (3.3) and Theorem 7
and its corollary.

We shall say that a space Y, n-dominates a space X if, and only if,
there is a map, f: X— Y, which has a left #-homotopy inverse, mean-
ing a map g: Y—X such that gf~,1.

THEOREM 9. If ¢ CW-complex, K, is (m—1)-dominated by a J,-
complex, L, then K is a Jn-complex.

13 Cf, [6], [5]. For the definition of H,(K) in terms of the relative homology groups
H.(K», K, treated as chain groups, see [14].
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Let f: K—L and g:L—K be cellular maps such that gf~, ;1. Since
f, g are cellular they induce homomorphisms

Dnl lnma( K1) — am, (L)),
Ynliamn (L") = am,(K™Y).

Let £,: K»1—Km™ be a cellular homotopy such that £ =gf| K1, £ =1.
Let 2=<#n=<m. Then £K"»1CK" and it follows that ¥.¢,=a,, where
o, is an automorphism of 4,7,(K"'). Therefore ¢, is onto. But
tamn(L" 1) =0, by the corollary to Theorem 7. Therefore 7,m,(K"*?!)
=0, whence K is a J,,-complex and Theorem 9 is proved.

If Km»=,_;L™ then K™ and L™ (m —1)-dominate each other. There-
fore we have the corollary:

COROLLARY. The property of being a Jn-complex is an invariant of the
m-type.

Let K be a CW-complex such that 7,(K) =0 for n=1, - - - , m—1-
Then it follows from Theorem 2 that the map K”—L°is an (m—1)-
homotopy equivalence, where L° is a single point. Since L9 is (obvi-
ously) a Jn,-complex it follows from Theorem 9 that K™ and hence
K is a Jp,-complex. Therefore Theorem 8 includes Hurewicz’s re-
sult“ that 7. (K)=H,(K) if m.(K)=0 for n=1, ..., m—1. The
following example of a simply connected Js-complex, K, with m3(K) 0,
shows that Theorem 8 is more general than Hurewicz’s theorem, re-
stricted to CW-complexes. Let K =¢"Ue?\Ue4, where €® is a 0-cell,
e®is a 3-cell whose closure is a 3-sphere, S?=¢%Ue?, and e!is attached®
to S® by a map, f:9E*—S3, of degree (2r+1)(r>0). Then m3(K) is
cyclic of order 27+1. If 1=# =3 then K*!= K" whence 7,(K*1) =0.
Let g:S*—>dFE* be an essential map. Then fg:S5*—S% is essential [4,
Theorem 9, p. 268] and hence represents the nonzero element of
74(S?). Therefore [2, Lemma 4, p. 418] iary(K?) =0, whence K is a
Je-complex.

According to (M) and (N) in §5 below, a CW-complex, K, is locally
contractible and its universal covering complex, K, is also a CW-
complex.

THEOREM 10. K is a Jn-complex if, and only if, K is a Jn-complex.
This is an obvious consequence of the corollary to Theorem 7.

14 15, p. 522]. See also [19, p. 314]. Hurewicz’s theorem applies to a larger class
of spaces than CW-complexes.

18 See §8 below. We use E* to denote an n-element (i.e. a homeomorph of an
n-simplex) and 9E" to denote its boundary. By a simplex we mean a simplex with
boundary.
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Let K be the universal covering complex of a CW-complex K.
Since m1(K) =1, m,(K) =~m,(K) if n>1 and since L is a Jn-complex if
m(L)=0forr=1, - - -, m—1 it follows from Theorem 10 that K is a
Jm-complex if 7,(K)=0 for =2, - - -, m—1. In particular K is a
Jm-complex if its universal covering space is an m-sphere or any
Euclidean space.

In Paper II we shall consider “Reidemeister” systems of chain
groups, C(K), C(L) and chain mappings C(K)—C(L), where K, L,
are CW-complexes. We shall prove that, if L is a J,-complex and if
dim K =m+1, then any chain mapping, C(K)—C(L), can be realized
by some (cellular) map, K—L. Hence it follows from Theorem 3 that
K=L if there is a chain equivalence C(K)—C(L). If, in addition
[5, Lemma 4], K and L are finite, simply-connected complexes, then
K=L if H,(K)=~H,(L) for all values of .

4. Cell complexes.’® By a cell complex, K, or simply a complex, we
mean a Hausdorff space, which is the union of disjoint (open) cells,
to be denoted by e, e, €7, etc., subject to the following condition. The
closure, &%, of each n-cell, e» & K, shall be the image of a fixed n-sim-
plex, ¢%, in a map, f:o"—e", such that

“41) (@) f [a"—aa” is @ homeomorphism onto e*,

(b) 9eC K™Y, where de™=fdo"=¢e"—e" and K1 is the (n—1)-
section' of K, consisting of all the cells whose dimensionalities do not
exceed n—1.

Such a map will be called a characteristic map for the cell e If
fio»—eé" is a characteristic map for e”, so obviously is fi:o"—é", where
h:(c”, do™)—(c™, dg™) is any map such that h[a"—aa” is a homeo-
morphism of ¢» —d0™ onto itself. No restriction other than de* C K»!
is placed on f | don. Therefore " need not coincide, as a point set, with
a subcomplex of K. Since K, and hence &, is a Hausdorff space and
since ¢” is compact it follows that &» has the identification topology
determined'® by f. A complex is defined as a topological space with a
certain cell structure. Therefore we shall not need a separate letter to
denote a complex and the space on which it lies.!? Notice that, in the
absence of further restrictions, any (Hausdorff) space may be re-

16 The use of these complexes was suggested in [3, p. 1235]. They are now called
cell complexes, rather than membrane complexes, in conformity with [14].

17 K» is defined for every value of n. If there are no m-cells in K for m>n then
K»=K,

18 [.e., YCenis closed if, and only if, f~1¥ is closed. In other words the closed sets
in & are precisely the sets fX for every closed set, X(C ¢%, which is saturated with
respect to f, meaning that f-fX =X (cf. [23, pp. 61, 95] and [24, p. 52]).

19 N.B. ¢ K will mean that e is a cell of the complex K and e K, K, etc., will
mean that the sets of points e, ¢, etc., are subsets of the space K.
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garded as a complex. For example, we may take it to be the complex
K =KD" which consists entirely of 0-cells, each point in K being a
0-cell.

A subcomplex, LCK, is the union of a subset of the cells of K,
which are the cells of L, such that, if eCL then éCL. Clearly L is a
subcomplex if it is the union of a subset of the cells in K, which is a
closed set of points in K. However the above example shows that a
subcomplex need not be a closed set of points. Clearly K” is a sub-
complex, for each =0, and we admit the empty set as the sub-
complex K-, Also the union and intersection of any set of subcom-
plexes, finite or infinite, are obviously subcomplexes. If X CK is an
arbitrary set of points we shall use K(X) to stand for the intersection
of all the subcomplexes of K, which contain X. Obviously K(p)
=K (e) =K (&), where p is any point in K and eEK is the cell which
contains p. A finite subcomplex, L (i.e. one which contains but a finite
number of cells) is a closed, and indeed a compact subset of K. For
it is the union of the finite aggregate of compact sets, &, for each cell
ecL.

The topological product, Ky X K,, of complexes K3, K, is a complex,
whose cells are the products, emtn2=¢jt Xeh2, of all pairs of cells
eNnE Ky, e2EK,. For let fiio™—eém (1=1, 2) be a characteristic map
for e, let g:o™ Xo™—emt2 be given by g(py, p2) = (fipn, fop2) and let
hiogmtni—gniXgn2 be a homeomorphism (onto). Then gh:gnitne
—¢gmitn2 gbviously satisfies the conditions (4.1). Therefore K; X K, is
a complex, with this cell structure. In particular K XI is a complex,
which consists of the cells ¢X0, eX1, ¢X (0, 1), for each cell eEK,
where (0, 1) is the open interval 0<¢<1.

Let K be a locally connected complex, let K be a (locally connected)
covering space of K and let p: K—K be the covering map. That is to
say there is a basis, { U}, for the open sets in K such that, if U€ { U}
then p maps each component of p~!U homeomorphically onto U
(cf. [20, p. 40]). Let ZEK be a given point and let e &K be the cell
which contains x =p&. Then a characteristic map, f:o"»—é", can be
“lifted” into a unique map,?° f:g"—K, such that f=pf and f(f~'x) = %.
Let é»=f(o»—d0™) and let po=p] é». Then f[a'"—aa” =po(f| g"—do™)
and since fla"—-&cr" is a (1-1) map onto e» it follows that p, is (1-1)
and is onto e,. Since p, and hence po, is an open mapping it follows
that po is a homeomorphism. Since

fl ¢ — do = p;l(fl ¢ — (90'")

2 See [21, Theorem 2, p. 40] or [22]. We shall sometimes use the same symbol,
for g, to denote two maps, f:4—B, g:4A—CCB, such that fa=ga for each point
a& A4, even though B#C.
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it follows that f[ o"—9d¢" is a homeomorphism, which, according to
the definition of &=, is onto &". Also fdg"C K»—'=p~'K»~1, Therefore f
satisfies the conditions (4.1). It follows that K is a complex, each of
whose cells is mapped by p homeomorphically onto a cell of K.

Let Q be a subcomplex of K and let e be a given cell in Q. Then
pé is closed, since & is compact, and péCpQ. Therefore pe = péC pQ.
Therefore pQ is a subcomplex of K, which consists of the cells pe for
each cell e€Q.

5. CW-complexes. We shall describe a complex, K, as closure finite
if, and only if, K(e) is a finite subcomplex, for every cell eEK. Since
K(p)=K(e) if p&Ce this is equivalent to the condition that K(p) is
finite for each point p& K. If LCK is a subcomplex and e&L then
obviously L(e) =K(e). Therefore any subcomplex of a closure finite
complex is closure finite.

We shall say that K has the weak topology (cf. [1, pp. 316, 317]) if,
and only if, a subset XCXK is closed (open) provided XMé is closed
(relatively open) for each cell e€K. If K is closure finite this is
equivalent to the condition that X is closed provided XML is closed
for every finite subcomplex L CK. For X/N\L is the union of the finite
number of sets XMeé (¢&L). Therefore XML is closed if each set
XMé is closed. Conversely, if XML is closed for each finite subcom-
plex, L, and if K(&) is finite, then XMé is closed, since XMé
=XNK(&)Ne.

By a CW-complex we mean one which is closure finite and has
the weak topology. Any finite complex, K, is obviously closure finite
and it has the weak topology since X CK is the union of the finite
number of sets XMé (eE€K). Therefore any finite complex is a CW-
complex. Also a complex, K, is a CW-complex if it is locally finite,
meaning that each point p&K is an inner point of some finite sub-
complex of K. For let K be locally finite. Then K(p) is finite, for each
point pE K. Therefore K is closure finite. Let X CK be such that
XNL is closed for each finite subcomplex LCK. Let L be a finite
subcomplex of which a given point p& K — X is an inner point. Since
XNL is closed, p is an inner point of L —X =L — (XNL). Therefore
X is closed and K has the weak topology. It may be verified that the
number of cells, and hence the number of finite subcomplexes of a
connected, locally finite complex, K, is countable. Hence, and from
(G) below, it may be proved that K is a separable metric space.

If the cells in a CW-complex, K, have a maximum dimensionality
we call this the dimensionality, dim K, of K. If there is no such
maximum we write dim K = o,

Examples of complexes which are not CW-complexes are:
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(1) do™ (n>1) regarded as a “0-dimensional” complex, K° whose
cells are the points of do™. This is closure finite but does not have the
weak topology.

(2) o» (n>1), regarded as a complex K"»=K"UJe", where e*=o"
—3d0™ and K°=9do", as in (1). This has the weak topology, since
ér=Kn, but is not closure finite.

(3) a simplicial complex, which has a metric topology but which
is not locally finite (e.g. a complex covering the coordinate axes in
Hilbert space). The weak topology in such a complex cannot be
metricized (cf. [1, pp. 316, 317]).

Let K be a CW-complex. We establish some properties of K.

(A) A map, f: X—Y, of a closed (open) subset, X CK, in any space,
Y, is continuous provided f | XMe is continuous for each cell e K.

Let fo=f IX Mé be continuous, for each cell eEK. Let Yy be any
closed (open) subset of Y. Obviously éN\f~1Y,=f,'¥, and it follows
from the continuity of f. that éNf~1Y, is a relatively closed (open)
subset of XMé. But XMé is a closed (relatively open) subset of ¢,
whence éNf-1Y, is closed (relatively open) in & Therefore f~1Y, is
closed (open) in K, and a fortiori in X. Therefore f is continuous.

(B) A subcomplex, LCK, is a closed subspace of K and the topology
induced by K 1is the weak topology in L.

Let YCL be such that YML, is closed, and hence compact, for
each finite subcomplex LoCL. Since YMNL,is compact it is a closed
subset of K. Let K, be any finite subcomplex of K. Then Ly=LNK,
is a finite subcomplex of L and

YnK(): YﬂLf\Ko= YnLo.

Therefore YN K, is closed, whence Y is closed in K, and a fortiori in
L. Therefore L has the weak topology. Also, taking Y=L, it follows
that L is closed, which establishes (B).

(C) If K is connected so is K* for each n>0.

Let >0 and let K” be the union of disjoint, nonvacuous closed
sets K%, Kj. Since the closure of a cell e€K is connected it follows
that eCK7 if eNK} #0 (=1, 2). Therefore K7 is a subcomplex of K.
Clearly den*! is connected (e*t'& K), whence it lies either in K} or in
Kj}. Therefore K»t! is the union of disjoint subcomplexes, Kj*!,
K3t where K} CK;t!and et € KT if dert! C K7, A similar (induc-
tive) argument shows that K™ is the union of disjoint subcomplexes,
K7, K3, such that K CK{t'(m=n,n+1, - - - ). Let K; be the union
of the K{' for m=n, n+1, - - -. Then K;NKm»=K} and

KiNKy,=U (K NK)NK" = U KN K: =0.
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Also K; 0, since Ki CK;, and K is a closed subset of K, according to
(B). Therefore K is not connected, which establishes (C).

(D) If XCK is compact, then K(X) is a finite complex.

If X meets but a finite number of cells, ¢;, - + -, e, CK, it is con-
tained in the finite union of the (finite) subcomplexes K(e), « - -,
K (e). Assume that there is an infinite set of cells, {e:}, each of which
meets X and let p;EXMe;. Then a finite subcomplex, LK, con-
tains but a finite set of the cells in {e.-} and e;/ L =0 unless ¢;&L.
Therefore L contains but a finite number of points in the set P= {p;},
whence P is closed. Similarly any subset of P is closed, whence P is
discrete. But this is absurd, since P is compact, being a closed subset
of X. Therefore (D) is established.

(E) If a complex L, and also L™ for each n=0, all have the weak
topology, then L is a CW-complex.

Certainly L° is closure finite. Assume that L»! is closure finite,
and hence a CW-complex, for some #>0. Let " be a given n-cell in
L», Since de” is compact it follows from (D) that L(de") is finite.
But obviously L(e*) =L(de”)\Ue and it follows from induction on »
that L is closure finite, which establishes (E).

Let f: K—L be a map of K onto a closure finite complex L, which
has the indentification topology'® determined by f. Further let the
subcomplex L(fé) be finite for each cell e€K.

(F) Subject to these conditions L is a CW-complex.

Let YCL be such that YN L, is closed for each finite subcomplex
LoCL. Let Log=L(f¢) for a given cell e K. Then eCf~'L, and

FYNe=fFYNeNeC(fY N L) NeC Y NL)NE,

since fTLANSBCf~1(4NB) for any sets 4, BCL. But f~}(YMLy)
Cf1Y. Therefore

Y Ne=fFTNL)Ne

Since YML, is closed it follows that f~*YM\é is closed. Therefore f~-1 ¥
is closed, since K has the weak topology. Since L has the identifica-
tion topology determined by f it follows that Y is closed. Therefore
L has the weak topology. Since L is closure finite by hypothesis this
proves (F).

(G) K is a normal space.

Let X;, X;CK be disjoint, closed subsets and let X;=X,NK"
(¢=1, 2; r=0). Clearly K° is a discrete set, and hence normal. Let
n>0 and assume that there are disjoint, relatively open subsets,
Uy', Uy 'CK»1, such that X} 'CUP' Then X:N\T; '=0
(4, =1, 2; i%4j). If Kr=K*»! we define U; = U;"'. Otherwise let
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fiom—é" be a characteristic map for a given #n-cell e€K and let
Vi=5 Ui Cos", Vi=fX;Cod'.

Since X1NX,;=0, X;N\T; '=0we have YiN\YV,=0, V;N\V;=0. Let po
be the centroid of o* and let 7, p be polar coordinates for ¢” (rE1,
pEAdo*) such that (r, p) is the point which divides the rectilinear
segment pop in the ratio r:1—r. Let V! Com be the (open) subset,
which consists of all points (7, p) with pEV;and 1 —e <r=1, where
0<e<1. Since Y;N\V;=0 it follows that, if eis sufficiently small, then
Y:N\V} =0, which we assume to be the case. Since f¥;CX;, foo"
CK»! and X;NK1C U ! it follows that Y:MN\de"C V. Let V!’
be an 7p-neighborhood of Y, defined in terms of a metric for o*,
where 7 is so small that V{'N\Vy =0, V!’ "V} =0 and V]
N (0o™—V;)=0. Then V}' MNoe»C V;. Let

W,=VIJUV}!.
Then Y;CW; and WiN\W,;=0. Obviously V{MNde¢"="V;, whence
-1 n—

(5.1) WiNas" =Vi=f Us".

Since f:0"—0d0¢™ is a (1-1) map onto e and fdo*Mem =0 it follows that
W is saturated!® with respect to f. Therefore fWW; is a relatively open
subset of &”. From (5.1) we have

(5.2) WiNK" =U N oae"

and it follows that fWiMfW.=0.
Let us write W;=W;(e") and let

Ur=Ui" U U .

S ER
Then it follows from (5.2) that UN\K*1!= U} ! and that
UiNae = Ui Nae" = W) K.
Also fW;(er) CK™1Ue" and UiNMer=fW;(e")Me". Therefore
UiNeg = UiNade)J(UiNe)
= W) N (K" U e
= fW(e).

Therefore U} is a relatively open subset of K*. Obviously X7 C Uy
and UrN U3 =0. Therefore such sets, Uy, may be defined inductively
for every value of #. Let them be so defined and let



1949) COMBINATORIAL HOMOTOPY 227
n
U; = U U..
n

Since Uyt'MKr= U} it follows by induction on 7 >n that

UiINK'=UINK""'NK " =U""'NK"=U}

and hence that U;/N\K"= U;. Therefore it follows, first that Us; is
an open subset of K and second that Uy U;=0. Obviously X;C U;,
which completes the proof of (G).

(H) If L is a locally finite** complex then K XL is a CW-complex.

If e€K, e’&EL are cells in K and L respectively, then the cell
eXe'EK XL is contained in the finite subcomplex K(e) XL(e’)
CK XL. Therefore K XL is closure finite.

Let the cells in K be indexed and with each m-cell, ef €K,
(m=0,1, - - +) let us associate an m-element, Ey, as follows. The
points in E{* shall be the pairs (x, €}'), for every point xEo™, and E}
shall have the topology which makes the map x—(x, ¢{') a homeo-
morphism. No two of these elements have a point in common and
we unite them into a topological space,

P = U E,
in which each Ef', with its own topology, is both open and closed.
Let fi*:0™—¢" be a characteristic map for ¢{" and let ¢: P—K be the
map which is given by ¢(x, €f') =fi'x, for each point (x, ;') EP. Since
& has the identification topology determined by f7* it follows that
the weak topology in K is the identification topology determined by ¢.
Let a space,

Q = U E,
7,2

and a map, ¥:Q—L, be similarly associated with L. Then K XL
=0(PXQ), where 0:PXQ—KXL is given by 0(p, q)=(¢p, ¥q)
(pEP, ¢=Q). Also P XQ is the union of the (m-+n)-elements Ei* X E},
and 0(E} X E}) =é;t", where e 7" =€ X ¢]". Therefore the weak topol-
ogy in K XL is obviously the same as the identification topology
determined by 6.

Let VCL be an open subset and y&E V an arbitrary point in V.
Since y is an inner point of a finite subcomplex, LoCL, it is contained
in a subset, VoC VM L,, which is open in L. Since L is normal there is
a neighborhood, W, of y such that WC V,. Since WC VoCLo and

21 T do not know if this restriction on L is necessary.
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since V, is open in L, it follows that WMé=0 for any cell e €L —L,.
Therefore there are only a finite number of cells in L, whose closures
meet W. Therefore ='W is contained in the union of a finite subset of
the components E;C(Q. Therefore y~'W is compact and (H) fol-
lows from Lemma 4 in [7].

(I) A homotopy, fi: X—Y, of a closed (open) subset, XCK, in an
arbitrary space, Y, is continuous provided f;[X Mé is continuous for
each cell e K.

This follows from (H), with L=1, and (A), applied to the subset
X XICK XI and the map f: X XI—Y, which is given by f(x, t) =f«x.

(J) (Homotopy extension.) Let fo: K—X be a given map of K in an
arbitrary space X. Let g;:L—X be a homotopy of go= fol L, where L 1s
a subcomplex of K. Then there is a homotopy, fi: K—X, such that
fil L=g..

Let K,=L\UK" (r=—1; K_;=L) and assume that g, has been
extended to a homotopy, f7 ':K,_1—X, such that f{)‘“1=fo|K,,_1,

»~!| L=g; (n=0). The homotopy fi™* can be extended throughout
K, 1\Je", for each n-cell?? e*& K, — L, and hence, by (I), to a (con-
tinuous) homotopy fi': K,—X. Starting with f;'=g, it follows by
induction on # that there is a sequence of homotopies, f7:K,—X
(n=0, 1, - - - ), such that fg =fo| K, fi| Kaca=F7"" It follows from
(I) that a homotopy, f;: K—X, which satisfies the requirements of
(1), is given by fi| Ka=f7.

Let X, CX;C - - - be a sequence of subspaces of a given space, X,
such that any map, (¢%, d6")—(X, X,-1), is homotopic, rel. do*, to
a map® ¢"—X, (=0, 1, - - - ). Let LCK be a given subcomplex,
which may be empty, and let fo: K—X be a map such that foL.*CX,,,
for each n=0,1, - - ..

(K) There is a homotopy, fi: K—X, rel. L, such that LK*CX,, for
each n=0,1, - - ..

Since each point in X is joined by an arc to some point in X, there
is a homotopy, f1: K*—X, rel. LY, such that f§=f,| K* and f3K°C X,.
Let >0 and assume that there is a homotopy f;™!: K»1—X, rel.
L1, such that f3"1=f0|K”—1, UK 1C X . It follows from (J)
that ff~' can be extended, first throughout L* by writing ff~*|L»
=fo|L”, and then to a homotopy, &:K"—X, rel. L» (£o=fo|K”).
Since £ K7 1C X, it follows from a standard argument (see [6, §8]),
and the condition on X,, X3, - - -, that there is a homotopy, 7::K"
—X, rel. (K»"\JL"), such that no=&, mK*CX,. If dim K < we

2 See [5, Lemma 10 in §16].

3 If #=0 this simply means that each point in X is joined by an arc to some point
m Xo.
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define f;': K»—X as the resultant of £; followed by %,. Then f; may be
defined inductively for every =0 and we take f;=f", where m =dim
K. But if dim K=« this method fails and we shall define f;’ as an
extension of f7!, not as the resultant of £, followed by 7.

If K»=K"! we define f; =f7'. Otherwise let g:g"—&" be a char-
acteristic map for a given n-cell e*© K. Let 7, p be polar coordinates
for o, defined as in (G), and let p;:é*—X be defined by

peg(r, ) = Earying(r, p) fHo=2u=1+4+71)
= N@-1-n/a-ng(r, p) (f147<2t=2).

Since no=%§; and g"ll e” is a homeomorphism onto o*—dg” it follows
that p,l e is single-valued and continuous. Since px =§£:x for any point
x=g(1, p) Eden it follows that p; is single-valued. Also p; is continu-
ous at {g(r, p), t} if »<1 and, obviously, if £<1. I say that it is con-
tinuous at {g(1, p), 1} = (gp, 1). For gp&€ K and 7| K”—1=170] K1
=£1| K1, Therefore, given a neighborhood, UCX, of £1gp =n.2p, it
follows from the compactness of I that there is a neighborhood,
VCe», of gp such that ne& U for every t €1, provided x € V. There is
also a neighborhood, V' Ceé", of gp, and a §>0 such that £x & U if
x&EV’, 1-26<t=1. Since (2—268)/(1+r)>1—24 it follows that
pxEU if xEVNTV’, 1—-6<t=1. Therefore p; is continuous. Also

pig(l, 2) = E8(L, ) = £ ¢(1, p),

pog(r, p) = %og(r, p) = fog(r, p),

pig(r, p) = mg(r, p) € X
Therefore a homotopy, f7: K»—X, rel. L*, such that

(5.3)

K = 77 fo=fl KN, LK C X,

is defined by fr| K»-1=fr"", f| e =p,, for each n-cell er€K". It fol-
lows from induction on # that such a homotopy is defined for each
720 and a homotopy, f:: K—X, which satisfies the requirements of
(K), is defined by f;| K»=f}.

Let fo: K—P be a map of K into a CW-complex, P, such that
fo[L is cellular, where LCXK is a subcomplex. Also let g;: K—P be a
homotopy such that the maps go, g1 and the homotopy g,l L are cellu-
lar.

(L) There is a homotopy, f,]K—»P, rel. L, of fo into a cellular map
fi. There is a cellular homotopy, g{ : K—P, such that gd =g, g =g,
g (l L=g¢g tl L.

Since any continuous image of ¢ in P is compact it is contained in
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a finite subcomplex QCP, according to (D). Any map (¢%, do™)
—(Q, Q*1) is homotopic, rel. do*, in Q to a map ¢"—Q". Therefore
the first part follows from (K). The second part follows from the first
part with K, L, fo replaced by KXI, (KX0)U(LXI)U(K X1),
g:KXI—P, where g(p, t) =g:p.

(M) K is locally contractible.

Let ao& K be a given point, let UCK be a given neighborhood of
a0 and let er&EK be the cell which contains ao. Let ErC UNe" be an
r-element, which contains a, in its interior, V'=Er—dE", and let
fi: V'— V" be a homotopy such that fy=1, fiV"=a,. Using induction
on n we shall define sequences of relatively open subsets, V*"CKn"
(n=r, r+1, - - -), such that V»*IN\K»= V» V»C U, and of homot-
opies fi: V*—Vn, such that fi*!| Ve=f7, fo=1, fiV*=a, Assuming
that this has been done, let

and let f;: V—V be defined by f;[ Vr»=f;. Then it follows from the
definition of the weak topology and from (I) that V is open in K
and f; continuous. Obviously VCU, fo=1, fiV=a, and (M) follows.

Assume that V»! and f?~! satisfy the above conditions for some
n>r. Let g:o»—eé” be a characteristic map for a given n-cell, e»E K,
and let polar coordinates, 7, p, for o» be defined as in (G). If gdo
NV 1=0, let WCoa" be the empty set. Otherwise let WCo™ be the
(open) subset, which consists of all points, (7, ), such that

1—e<r=1, pE gV

where 0<e<1. Since V*!'CU, whence g-'V»1Cg-1U, it follows
that WCg U if e is sufficiently small, which we assume to be the
case. Let &: W—W be the “radial projection,” which is defined by

§(r, p) = (r+ ¢t — 1, p),
and let 8,gW—V»~1\UgW be given by

0:5(r, p) = ghatra-n(r, ) o=2t<1—7)
= f?z_tl—x+r)/<1+r)g(1y p) (ifl1—-—r=2<2).

Since £.(1, p) = (1, p) and ghi(r, p) =2(1, p) =fo~'g(1, p) it follows from
an argument similar to the one which comes after (5.3) that 6, is
single-valued and continuous. Also

2[5, §16, Theorem 6)]. It follows from Theorem 6 in [5] that the condition
fx& P(fox) (*EK) may be imposed on the homotopy f; in (L).
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big(1, p) = fi &(1, p),
(5'4) 00g(r, ?) = gfo(f, P) = g(rr 17),
0:8(r, 9) = 1 8(1, §) = ao.

Let V* be the union of V*~! and the sets g, which are thus de-
fined for all the n-cells in K. Arguments used in (G) show that V»
is a relatively open subset of K and that V"M K» 1= V"1, Also it
follows from the definition of W that de"N\W Cg~'V!, whence

K»1 N gW C V1,

Hence it follows from the definition of the weak topology that V»
is the union of V»! and the sets g, which are closed since W is
compact. Since V*1CU, WCg'U it follows that V*CU. Finally
define fI': Vr—V» by fr| Ve-1=£7"", ff| gW =6,. It follows from (5.4)
and from (I) that f7 is single-valued and continuous and that f§=1,
ftVr=a,. Therefore (M) follows by induction on 7.

(N) Any covering complex, K, of K is a CW-complex.

Since K is locally connected, by the definition of a covering space,
each of its components is both open and closed and is a covering com-
plex of a component of K. A locally connected complex is obviously a
CW-complex if, and only if, each of its components is a CW-complex.
Therefore (N) will follow when we have proved it in case K and K are
connected. We assume that this is so and also, to begin with, that K
is a regular covering complex of K. That is to say the group, G, of
covering transformations® in K operates transitively on the set p~g,
for any point g€ K, where p: K—K is the covering map. We shall
describe an open set, UCK, as an elementary neighborhood if, and
only if, each component of p~1U is mapped by p topologically onto
U. We shall describe an elementary neighborhood in K as a basic
neighborhood if, and only if, its closure is contained in an elementary
neighborhood. We shall describe a subset of K as a basic neighbor-
hood if and only if it is a component of p~1U, where U is a basic
neighborhood in K. If UCK is a basic neighborhood the com-
ponent of p~!(pU) are the sets TU for every TEG. It follows from
the definition of K and the normality of K that the basic neigh-
borhoods constitute a basis for the open sets, both in K and in K.

Let UCK be a basic neighborhood and let V be an elementary
neighborhood such that UC V. Then the components of p~!V are
disjoint open sets in K, each of which contains exactly one com-
ponent of p~1T. Let QCp~'T be a set of points, of which at most

% ] e., the group of homeomorphisms, T:K—XK, such that pT=p.
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one lies in each component of p~'T. Then Q is a closed discrete set.
For if Q has a limit point, ¢, then pg& U C V, whence § lies in one of
the components, V, of p~1V. But this is absurd, since ¥ contains at,
most one point of Q. Therefore Q is closed and discrete.

Let UC K be a basic neighborhood, let U* be its closure? and let
CC K be compact. I say that only a finite number of the sets TC meet
U*, where TEG. For if TC meets U* then C meets T1U*. Let
grECNT1U*. Since T'U*NT"'U*=0 if T'#T" it follows from
the preceding paragraph that the aggregate of points gr, for every T
such that U*MTCs0, is a discrete, closed subset of C. Since C is
compact the set {gr} is finite, which proves our assertion.

We now prove that K has the weak topology. Let X C K be a sub-
set such that XMe* is closed, for every cell #€ K. In order to prove
that X is closed it is enough to prove that XN\ U* is closed, where U*
is the closure of an arbitrary basic neighborhood UCK. For this
implies that U—X=0U—(XNU*) is open, whence it follows that
K —X is open. Therefore, to simplify the notation, we assume that
X C U*, where U is a basic neighborhood in K. Let X =pX and let
¢ be a given cell in K. Then?

XNeé=p(XNpl).

Let 2E€ K be a cell which covers e. Then p~1¢ consists of the sets Te*
for every TEG, and Te* is the closure of the cell TéE K. Since e* is
compact it follows from the preceding paragraph that only a finite
number of the sets Te*, say Tie*, - - -, Tie*, meet U*. Let P;=X
NTie* (=1, - - -, k). Then

XNeé=p(XNple) =p(P\U---UP.

But P; is closed, by the hypothesis concerning X, and hence compact,
since Tie* is compact. Therefore, P,\J - - - \UP;, and hence XMé are
compact. Since the cell eE€ K is arbitrary it follows that X is closed.
Therefore p—1X is closed. Since U*MT U*=0if T'1 it follows that
X=0*NUTX =U*NpX.
T

Therefore X is closed and it follows that K has the weak topology.

Since K° is discrete it follows that K°=p~1K° is a discrete set of
points. That is to say, K° has the weak topology. If #>0 then K* is
connected, according to (C), and K" is obviously a covering complex
of K». It follows from (L) that the injection homomorphism, m;(K™)

% We shall denote the closure of a set PC X by P*.
27 If f: P-Q is any map and ACP, BCQ, then f(4(M\f1B) = (fA)(\B.
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—m(K), is onto, whence K* is connected. Obviously TK»= K» for
any TEG and it follows that K» is a regular covering complex of
K». Therefore K» has the weak topology, according to what we have
just proved. It follows from (E) that K is a CW-complex.

Now let K be a (connected) covering complex of K, which is not
regular. Then a universal covering complex, K of K is a universal
covering complex of K. Therefore K is a CW-complex. Let p: K—K
be the covering map. Since p is an open map it follows that K has
the identification topology determined by p. It follows from the final
paragraph in §4 that K is closure finite and that the remaining condi-
tion of (F) is satisfied. Therefore it follows from (F) that K is a
CW-complex, which completes the proof of (N).

6. Proof of Theorems 1-4. Let X, Y be spaces in the class @ and
let f: X—Y be a map such that the induced homomorphism, f,:7,(X)
—m,(Y), is an isomorphism onto if 1=#<N-+1, where N
=max (AX,AY). Let P and Q be CW-complexes, of dimensionalities
AX and AY, which dominate X and Y respectively. Let \: X—P,
N:P—X and pu: Y—Q, u’:Q—Y be maps such that N'A=>~1, u'u~1.
Let Z be the mapping cylinder?® of f and R the mapping cyclinder of
the map uf\':P—Q, assuming that no two of the spaces X, 7,
X X1, etc., have a point in common.

Assume that there is a homotopy, 4.::(Z, X)—(Z, X), such that
ho=1, MmZCX. Let h:Z—X be given by hz=hz (2&2) and let
1: X—Z be the identical map. Then th=h:Z—Z, whence th>~1.
Also hi~~1, since k;: X—X, given by kix =hx (x EX), is a deformation
of ko=1 into ky=hi. Therefore 1 is a homotopy equivalence. As in [6]
it follows that f: X—Y is a homotopy equivalence.

We now prove the existence of the homotopy k.::(Z, X)—(Z, X).
The argument in [6], which refers to the homotopy sequence

6.1) Tn(X) = T(Z) — m(Z, X) > mp1(X) = 10 (2),

shows that m.(Z, X)=0if 1=#<N-+1. Since dim Q=N it follows
from (K), in §5 above, that there is a homotopy, p::Q—Z, such that
po=ju’, mQCX, where j is the identical map j:Y—Z. Therefore
jo~ju'u~pu. Since pyu Y Cp1QCX, the argument used in [6] shows
that wy41(Z, X) =0, in case N< =,

Let K=(PXI)UQ and let R be formed from the CW-complex K
by identifying?® (p, 0) with p and (p, 1) with ufNpEQ for each
point p&EP. Let ¢:K—R be given by ¢(p, 0)=p, ¢(p, 1) =uf\'p,
o(p, t) = (p, t) if 0<t<1,$|Q=1. The arguments in [6, §2] show that

28 See §7 below.
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there are maps
viZ, X)—> (R, P), ViR, P)—(Z, X),

with V']Q=jp’, and a homotopy, {::(Z, X)—(Z, X), such that
Co=vy, 1=1. Let L=(PX0)U(PX1)JQCK, let p;:Q—Z mean
the same as before and let p/: L—Z be given by

pi (p, 0) = v'¢(p, 0),
pl (p, 1) = pd(p, 1),
plq = pupgq (pEPEQ.

Then pd =»'¢| L,since po=ju’=»'| Q,andp{ LCX.Leto=r'¢p: K—Z.
Then it follows from (J) that p/ has an extension y,;: K—Z. Since
YiL=p{ LCX and since dim K=<N-+1 and 7,(Z, X)=0 if 1=n
<N+2 it follows from (K) that there is a homotopy, ¥{:K—Z,
rel. L, such that ¢¢J =y, y{ KCX. Let 0,: K—Z be the resultant of
Y. followed by y/. Then it is easily verified that x;=0,"1:R—Z is
single-valued, and hence continuous [7, §5]. Moreover xo=yop?
=p’ppt=p’ and xuR=y{ ¢ 'RCX. Therefore the required homo-
topy, ki (Z, X)—(Z, X), may be defined as the resultant of {1 fol-
lowed by xw. This proves Theorem 1.

The proofs of Theorems 2, 3, 4 are the same as those of the cor-
responding theorems in [6].

7. Note on n-homotopy. Let us return to Fox’s original definition
of n-homotopy, in terms of finite polyhedra. It is not certain, for
reasons indicated in [6], that an #-homotopy equivalence, f: X—Y,
induces an isomorphism of 7.(X) onto m.(Y) (»=n), where X, ¥ are
arbitrary, arcwise connected spaces. This question reduces to the
following. Let &,:m.(X)—m,(X) be the endomorphism induced by a
map, k:X—X, such that k>~,1. Is &, an automorphism if 1=<r=<n»?
Consider the case r=1. It is easily proved that, given any finite set
of elements, ai, * + +, axCmi(X), there is an element, n&Em (X),
such that ma;=nam=! (¢=1, - - -, k). It follows that &, is an iso-
morphism into. Also it is an inner automorphism if 7;(X) has a finite
set of generators. Is ; an automorphism if 7,(X) is arbitrary?

Meanwhile we show that these questions can be answered with
our definition. Let X be an arbitrary arcwise connected space and let
a point x¢&X be chosen as base point for all the groups m,.(X). We
construct a CW-complex, K=K (X, x0), which is somewhat anal-
ogous to the singular complex of homology theory. Let K° consist of
a single 0-cell e®. With each map, 6: (o7, d07)—(X, x0) (r=1,2, - - - ),
we associate a cell, €K, such that de¢j=e°. The points of ¢ are the
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pairs (p, 0), for each point pE¢"—ad¢7, and g:o'—é, given by
gp=(p, 0)(pEor—0a07), gdo"=¢" is a characteristic map for €. The
complex thus defined is obviously closure finite and we give it the
weak topology.

Let f, f’: X—Y be maps of X in any arcwise connected space Y,
and let f,, f! :w,(X)—m.(¥) be the homomorphisms induced by f, f/,
when the base-point y,&€ Y is joined to fxo, fxo by paths (see [12]
and [1, p. 279]) N\, N (I, 0)—=(Y, y0). If nEm(Y), bET(Y, y0)(r=1)
we shall use 7-b to denote the image of b in the automorphism of
7.(Y, ), which is determined by %. Thus 5-b=7by~! if r=1. Using
our definition of z-homotopy we have:

THEOREM 11. If fo~,f' there is a fixed element, n&m(Y), such that
Jla=n-f.a for every aCn(X) and every r=1, - - - , n.

Let K=K (X, x0) mean the same as before and let ¢: K—X be
given by ¢e®=xq, ¢(p, §) =0p, for each point (p, §) EK —e°. It fol-
lows from (A) in §5 that ¢ is continuous. The homomorphism,
¢, 7. (K)—m,(X), induced by ¢ is obviously onto. Since f~,f’ there
is a homotopy, &;:K»—Y, such that £0=f¢|K”, & =f'¢| K. Let
w:I—Y be given by u(f) =£.". Then u(0)=A(1), u(1)=N"(1). Let
7Em(Y) be the element represented by the circuit, which consists
of N\, followed by u~!, given by u~1(f) =u(1—1%), followed by A1
Then it is easily verified that f/¢,a=7-f,¢,a, where aEn,.(K) and
1 =7 =n. Since ¢, is onto this proves the theorem.

8. A process of identification. We shall prove a theorem, which is
analogous to Theorem 2 in [7]. For this we shall need a lemma con-
cerning a process of identification, which is often used (e.g., in con-
structing mapping cylinders, attaching cells k to complexes, etc.) but
which, as far as I know, has never been described in full generality
and detail.

Let X and Y, be given topological spaces and let fo: Xo— Y, be a
map of a closed subset, X,CX, into Y. We allow X and ¥, to have
common points, but only if XN Y,C X, XN Y, being a closed subset,
both of X and of Y, and fo| XoN\¥s=1. Let ¥ be the space which
consists of the points in X —X, and in Y, with the identification
topology determined by the map? ¢: X\UY,— Y, whereqSI X-Xo=1,
é| Yo=1, ¢| Xo=Ffo. Notice that a set BoC ¥y is closed in Y if, and

20 X\ Y, denotes the space, which consists of the points in X and in ¥ and in
which a subset, 4, is closed if, and only if, A/M\X and A\ Y, are closed subsets of the
spaces X and Y. Since X/ \ Y, is closed in both X and Y, it follows that X and Y,
keep their own topologies in X\ ¥,.
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only if, YoN\¢~1B, (=B,) and XMN¢~1B, (=f; 'Bo) are both closed in
X\UY,. Since X, is closed it follows from the continuity of f, that
fo By is closed in X if By is closed in Y,. Therefore Y, keeps its own
topology and is a closed subset of Y. Similarly X — X, keeps its own
topology. We shall say that Y is formed by attaching X, or X — X, to
Yo by means of the map fo. We shall also say that Y is formed by
identifying each point x EX, with fox E Y.

In some cases we may be given the spaces X, ¥ and a map,
fi(X, Xo)—(Y, Yy), where X,CX and Y,CYVY are closed subsets,
subject to the conditions:

(8.1) (a) f| X —X, is a homeomorphism onto ¥ — Y;

(b) a subset BCY is closed (open) if, and only if, BN\ Y, is closed

(relatively open) and if f~1B is closed (open).
In this case we may always regard Y as formed by attaching a homeo-
morph of X to Y,. For let ko: Xo—X{ be a homeomorphism of X,
onto a new space, X{, which does not meet Y. Let X’ be the space
consisting of the points in XJ and in Y— Y, with the topology
which makes %: (X, Xo)—(X’, X{) a homeomorphism, where hIXo
=ho, | X —Xo=f| X — X,. The conditions (8.1) are satisfied by X',
Y and the map fh~': (X', X¢)—(Y, Y,). Since X'—X¢J =Y —Y,and
fh"ll X'—X{ =1 it follows that Y is the result of attaching X’ to Y,
by means of the map fh’"‘l Xd.

A particularly important application of this construction is that
of the mapping cylinder of a map, g:4—B, where 4, B are disjoint
spaces. After replacing 4 XI by a homeomorph, if necessary, we
assume that it has no point in common with 4 or B. Then the map-
ping cylinder is defined as above, with Y,=AUB, X=4 XI,
Xo=(4X0)\J(4 X1) and fo(a, 0) =a, fo(a, 1) =ga.

Let X, Y and f:(X, Xo)—(Y, Y,) satisfy (8.1) and let X —X,
=Y—Y,, f| X —Xo=1. Let X be a normal, Hausdorff space and let
Y, satisfy the following “weak regularity” condition: distinct points
1, ¥2C Yy have neighborhoods Vi, V,C ¥ such that ViN\V,=0.

LemMA 1. Under these conditions Y is a Hausdorff space.

Let y1, ¥. be distinct points in V. First assume that at least one of
them, say y, is in ¥Y— Yy=X—X,. Since Y, and X are Hausdorff
spaces, the sets y1, ¥2 and f~ly, are closed. Since X is normal there is
therefore a neighborhood, UCX, of ¥, such that

ﬁ C X — (Xouf—lyz).

Then fU=TUCY~—Y,and y,€U, y,&YV—T. Also U is open and U
closed in Y. Therefore U, Y—T are disjoint, open subsets of Y,
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which contain ¥, ¥, respectively.

Let y1, .CY¥y and let V{, V2CY, be neighborhoods of yi, .
such that VINTV2=0. Let Ul =f"1V?CX, (i=1, 2). Then T; Cf735,
whence TN Ty =0. Since X is normal there are disjoint open sets,
U{, Ud CX, such that TYCU!. Let

Us = Ul — (Xo — UY.

Then Uj is open, since Xo— U} is closed, and UiN\ Uy =0, U;N\X,= Uj.
Let

Vi= (Us = UYUVIC Y.

Since U;— U{C Y —Y, it follows that Yo\ V;= V7, which is open in
Y. Also

V= U= UYU V= (Ui = U Ui = U..

Therefore V; is open in Y. Also y;E V; and, obviously, ViN\V,=0.
This completes the proof.

Now let X and Y, be disjoint CW-complexes and let X, be a sub-
complex of X. Since X, Y, are normal, Hausdorff spaces it follows
from Lemma 1 that Y is a Hausdorff space. Let g:o”—¢é" be a char-
acteristic map for a given cell e»&X —X,. Then fgl o"—ade" is a
homeomorphism onto fe", where f: X—Y means the same as before.
Itfollows that Y is a complex, consisting of the cellsin Yyand the cells
fe(e€EX —X,), provided?® f(X,MN\der) C Y§~ ' for each n-celler X — X,
(n=0,1, - - -). This being so, I say that ¥ is closure finite. For any
cell e€ Y, is contained in the finite subcomplex Y,(e). Let e be a
given cell in X — X, let K=X(e) and let Ko=KMNX,. Then K,, and
hence fK,, is compact, and it follows from (D) in §5 that L= Y,(fKo)
is finite. The subset L\JfK is compact and is the union of the cells
in Ly and in f(K —K,). It is therefore a subcomplex. Moreover it is
finite and contains fe. Therefore Y is closure finite. Also ¥ has the
identification topology, which is determined by the map ¢: XU Y, —7Y,
where ¢1X=f, ¢| Yo=1. Obviously XUY, is a CW-complex, con-
sisting of the cells in X and in Yy, and the cells in ¥ are the cells ¢e
for each cell e€(X —X,)UY,. Since Y is closure finite it follows
from this and from (D) in §5 that Y(¢é) is finite for any eEX\U Y.
Therefore Y is a CW-complex, according to (F) in §5. Under these
conditions®! we say that Y — Y, is ¢somorphic to X —X, and that
f] X —X, is an isomorphism of X —X, onto Y — Y.

% E.g., if fo: Xo— Yo is cellular or if X»1C X, fXoC Yo
31 In this definition we allow X¢and Y, to be empty.
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We mention two applications of the preceding paragraph. The first
is that the mapping cylinder of a cellular map, f: K—L, where K, L
are CW-complexes, is itself a CW-complex. Secondly, let X be the
union of a set of n-elements, { E; }, which are disjoint from each other
and from Yo, each E} being a subcomplex, Ef=e{Ue} 'Ue;. Let
X be the union of the boundaries, dE} =ef\Ue?™?, and let f; be any
map of the form f5:Xo— Y3 ". Then we say that ¥ is formed by
attaching the set of cells {€}} to Yo by means of the maps fo| OEL.

Let X, Y and f:(X, Xo)—(Y, Y,) satisfy (8.1), where X, Y are
CW-complexes, X, Yy are subcomplexes and the map f is cellular.
Let fo: Xo— Y, be the map given by fox =fx (x €X,). Then we have:

THEOREM 12. If fo: Xo— Y is @ homotopy equivalence, so is f: X— Y.

The proof is the same® as that of Theorem 2 in [7].

If Y, is a single point we describe the above process of identifica-
tion as shrinking X, into the point V. It follows from Theorems 1
and 12 that a simply connected, aspherical subcomplex, X,C X, may
be shrunk into a point without altering the homotopy type of X.

Let Xo=X"and let Yo=Y;. Then ¥Y*= Y§ and we have:

CoROLLARY 1. Given a CW-complex, Yo=X", there is a CW-com-
plex, YV, such that Yr= Y3, X=Y and Y — Y™ is isomorphic to X —X™.

Let X and Y, be connected, let Vo= Y3 and let Yi=,4X" (n=2).
Then

X"Uzi=Y,U 3,

where Z%, 2} mean the same as in Theorem 6. Let us “fill up” the
closure, S*, of each cell e &2} with an (n+1)-cell, e»*!, in such a way
that &"*! is an (n+1)-element bounded by S». The result is a CW-
complex,® K =X\UZPU {er+1}. There is obviously a retracting de-
formation of K into X in which each (#»+1)-element, é*t!,is retracted
into the point XNMeértl, Therefore K=X. Also K»=X"UZ}, K»1
=Xr1, Let Lr=YjUZ; Then Lr!'=Yy~'. Therefore, replacing
X, X», Yg in Corollary 1 by K, K», L, we have:

COROLLARY 2. If Y§=,1X" there is a CW-complex, Y, such that
X=Yand Yr1=VY3L

For example, if 7(X)=0 for r=1, - - -, n—1, we may take ¥V

# Notice that CW-complexes and subcomplexes have all the homotopy extension
properties required by [10].

3 We assume that the cells in =} and the new (n-+1)-cells, {e**1}, are disjoint
from each other and from X.
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to be a single point, as observed in §3. Then X=Y, where Y» 1= Vg
and Y™ consists of the n-spheres, which are the closures of the n-cells
in 3.

9. Countable complexes. We describe a complex as countable if,
and only if, the number of its cells is countable. By a locally finite
(finite) polyhedron we mean a space which is covered by a locally
finite (finite) simplicial complex. The purpose of this section is to
prove:

THEOREM 13. Any countable (finite), p-dimensional CW-complex
(p= ) is of the same homotopy type as a locally finite (finite), p-
dimensional polyhedron.

We shall need three lemmas for the proof of this. A CW-complex,
K’, will be described as a subdivision of a CW-complex K if, and
only if, both complexes cover the same space and if each cell of K’
is contained in a cell of K. If K’ is a simplicial complex we shall de-
scribe it as a simplicial subdivision of K. Let K’ be a simplicial sub-
division of K and let a set of disjoint #-cells, {¢}}, be attached to K by
maps, g;:0E; K1 (KNE; =0), each of which is simplicial with re-
spect to K’ and some triangulation of dE7. Then we have:

LEMMA 2. The complex K\J{e}} has a simplicial subdivision, of
which K’ is a subcomplex.

This will be proved in §10 below.

Let K and {¢] } mean the same as in Lemma 2, except that K need
not have a simplicial subdivision. Let f:K—L be a homotopy
equivalence of K into a CW-complex L. Let

h.' zfg,:aE? - L,

where h,0E; CL*! but ~ indicates homotopy in L. Let the cells

{e!} be attached to L by the maps ki, thus forming a complex
LU{e}} (LNE;=0).

LeMmMA 3. The map f: K—L can be extended to a homotopy equivalence
KU {e}} >LU{e}}.

If h;=fg; this follows from Theorem 12, taking hl e; =1. In general
it follows from Theorem 12 and the proof of Lemma 5 in [5].

Let a connected, CW-complex, K, be the union of an “expanding”
set of subcomplexes, KoCK;C * - -+, such that if >0 then K, is
connected and the injection homomorphism

Tne 1r,.(K,.+1) g ﬂ'n(K)
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is an isomorphism onto (e.g., K,=K"). Let L and L,CL,C - - - CL
satisfy the same conditions and let {K,}, {L.} be related by a se-
quence of homotopy equivalences,

f": (Kn, Kn—l) - (Lm Ln——l)’
such that f| K, ,=f""1.

LemMmA 4. The map, f: K—L, which is given by f|K,.=f", is a
homotopy equivalence.

Let 2, mean the same in L as in K and let

Faimn(K) = wa(D),  fu iwn(Knpr) = (L)

be the homomorphisms induced by f, f~+1. Then fat!is an isomorphism
onto since f**! is a homotopy equivalence. Also

inl Tn(Kn+1) - Wn(K)’ in:Tn(Ln+1) - Tn(L)

are isomorphisms onto and obviously fui,=%,fat!. Therefore f, is
an isomorphism onto, for each n=1, 2, - - -, and the lemma follows
from Theorem 1.

We are now ready to prove Theorem 13. This will obviously follow
when we have proved it for a countable CW-complex, K, which is
connected if p=dim K>0. We first assume K to be finite and use
induction on the number of cells in K, starting with the trivial case
K=K Let >0 and let Ko=K —e?, where e? is any p-cell in K.
Assume that there is a finite complex, Lo, with a simplicial sub-
division L¢, which is related to K, by a homotopy equivalence
fo: Ko—Lo. Let e? be attached to K, by a map g:0E?—K,, where
e? =FE? —QE?. Assuming that LyN\E?=0 let e? be attached to L, by
a map

ho =~ fog:0EP — L,

which is simplicial with respect to L{ and some triangulation of dE?.
The result is a complex, L, which has a simplicial subdivision, accord-
ing to Lemma 2. The theorem, for K finite, now follows from the
induction and Lemma 3.

Now let K be infinite. In order to repeat the above construction an
infinite number of times we shall, so to speak, “spread L, out” so
that L may be locally finite. Assume that there is a sequence of
locally finite complexes, LoCL,C - - -, such that L, is connected if
n>0, and a sequence of subcomplexes, P,CL,, such that:

9.1) () Ly.y—P,1=U,yisopenin L, and L, ;CU, (L.i=P_
=0),
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(b) P, is a deformation retract of L,,

(c) if #>m>1 the injection homomorphism Tp_1(Ln) —Tm-1(Ls) is
an isomorphism onto,

(d) there is a sequence of homotopy equivalences, f*: (K», K»1)
~—(Ln, La-1), such that f"| Kn—1l=fn—1

(e) L, has a simplicial subdivision, L./, of which L,_; is a sub-
complex.

(f) dim L,=dim K*=<n.

Then we define the topological space

p
L=VUL, (p = dim K £ »),

n=0
in which a subset X CL is closed (open) if, and only if, XML, is a
closed (relatively open) subset of L,, for each #=0. Clearly L, keeps
its own topology in L and since each L, is a locally finite complex it
follows that L is a CW-complex, which consists of the cells in
Lo, Ly, - - + . I say that L is locally finite. For U,_yCL, 1CU, and
U,-1is open in L, and hence in U,. Therefore, given m 20, it follows
by induction on # that U, is open in U, and hence in L, for every
n>m. Therefore U, is open in L. Since L,_;C U, it follows that any
point ¢&L is in U, for some #n. Let g€ U, and let QCL, be a finite
subcomplex, of which ¢ is an inner point, according to the topology
of L,. Since U, is open in L it follows that ¢ is an inner point of Q,
according to the topology of L. Therefore L is locally finite.

Since L is locally finite it follows from (D), in §5 above, that any
compact subset is contained in a finite subcomplex of L. It is there-
fore contained in L,, for some #=0, and it follows without difficulty
from (9.1c) that the injection homomorphism mu—1(Lm) —mTm—1(L)
(m>1) is an isomorphism onto. Therefore it follows from (9.1d) and
Lemma 4 that K=L. Clearly

L'=UL,

is a (locally finite) simplicial subdivision of L. Finally dim L
=p=dim K and the theorem follows.

Now assume that L,, P, have been constructed forn=1, - - -, r=0
so as to satisfy (9.1) with n=r. If K*'=K" we define L,.1=L,,
P,y =P,. Let K'+1£ K" and let X, be the complex covering the half
line {a, «), which has O-cells at the points a4z (z=0, 1, - ).
Assuming that the topological product P,X X, has no point in com-
mon with L,, we identify each point x &€ P, with (x, 0) &P, X0 so as
to form a locally finite complex

M, =L \J (P, X X).
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This has the simplicial subdivision L;\J(P,XX,)’, where (P,XX,)’
is formed by starring the prisms ¢ X {3, s+1) (¢=0, 1, - - ), for each
simplex, o, in the subcomplex of L/ which covers P,. Clearly L, is
a deformation retract of M,, whence g": K™—M,, given by gx=fx
(xEK"), is a homotopy equivalence. It obviously follows from (9.1b)
that P,XX, is a deformation retract of M, and hence that P.Xk
is a deformation retract of M,, for each k=1, 2, - - -, Therefore any
map 9E+1— M, is homotopic to a map in P,Xk. We now repeat the
construction used in the finite case, attaching an (r-+1)-cell, &, to
M, by a suitable map dE;'—P, Xk (k>0), where e[t?, 5!, - - - are
the (r+1)-cells in K. The result is a locally finite complex, L,s,
which satisfies (9.1d, e, f) with » =7r+1. We define

-Pr+1 = (Pr X Xl) V) {G'I:Fl}-

Clearly P,XX, is a deformation retract of P,XX,, and hence of
M,. Therefore P,,; is a deformation retract of L,.;. Therefore (9.1b),
and obviously (9.1a), is satisfied with » <7-1. Since L, is a deforma-
tion retract of M, and L., is formed by attaching (r+1)-cells to M,
it follows that (9.1c), and hence all the conditions (9.1), is satisfied
with #n<r+41. Starting with Ly=Py=K" the theorem now follows
by induction on 7.

10. Proof of Lemma 2. An zn-element, E”, in an n-sphere, S*, will
be called a hemisphere if, and only if, the closure of S*— E* is also an
n-element. Let f:0”—¢* be a barycentric map of an n-simplex, o*,
onto a k-simplex o* (k <%). Assuming that ¢* does not meet o» let T’
be the mapping cylinder of f. We shall prove:

LeEMMA 5. T is an (n+1)-element and o™ is a hemisphere in 9T.

Before proving this we deduce a corollary and show that it implies
Lemma 2. Let o} be a face of an (n-+1)-simplex, ¢"t1. Let fi:07—0*
be a barycentric map of ¢} onto o* and, assuming that ¢* does not
meet o}t!, let E*t! be the space formed by identifying each point
pEd?t with fip. Obviously E**+! is homeomorphic to ogt"\UT', where T
means the same as in Lemma 5 and ¢4 is an (n+1)-simplex, of
which o =¢3*'MT is a face. Since ¢ is a hemisphere both of da5*+*
and of dT" we obviously have the corollary:

COROLLARY. E**! is an (n+1)-element.

Let an n-cell, e, be attached to a complex, K, by means of a map,
dE"—K, which is simplicial with respect to a simplicial subdivision,
K’, of K and some triangulation, S, of dE". Let po be an interior
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point of E». When e" is attached to K each simplex o+! = poo", where
¢” is a simplex of S, is transformed into an (r+1)-element E™!, ac-
cording to the above corollary. We triangulate K’\Ue" by starring all
these (r+1)-elements, in order of increasing dimensionality. The re-
sult is a simplicial subdivision of K\Ue", which contains K’ as a sub-
complex. Lemma 2 follows from this construction, carried out in each
of the cells e}

We now prove Lemma 5, using a method suggested by M. H. A.
Newman. Let ¢* be a rectilinear simplex in Euclidean space R*. Let
bo, + + -, bx be the vertices of ¢* and let g; be the face of ¢”, whose
vertices are those which are mapped by f on b;. Let a; be the centroid
of a5, let of be the k-simplex ao - - - a; and let g:o®—0g be the bary-
centric map, which is determined by go;=a;. Then ga;=a;, whence
ggx = gx for each xEa™, or g2=g. Also cEof, where ¢ is the centroid of
a", since a; is the centroid of gy, and it follows from the definition of
a barycentric map that gc=c.

We treat R™ as a vector space, taking ¢ to be the origin or null
vector, which we also denote by 0. We shall use small Roman letters
to denote vectors in R* and small Greek letters, as in Ax+puy, to de-
note (real) scalar multipliers. Let 6):06”—0¢" be the map which is given
by

(10.1) Ohx = (1 — Nax+ Ngx/2 O=A=1,2E ).

I say that if A<1 the map 6, is nonsingular. For 6, is a linear map,
such that 6,0=0, and if it is singular, then 6\x =0 for some nonzero
vector x&g™. Since g?=g it follows from the linearity of g that

(10.2) ghx = (1 — Ngx + Ngx/2 = (1 — N\/2)gx.

Therefore x =0 implies, first, gx =0, and then (1—\)x=0, or x=0
if A <1, which proves the assertion.

I say that, if 0SA<u =1, then 6,0" is in the interior of fo™. For
O\x is the point which divides the segment joining x to gx/2 in the
ratio A: (1 —\). When we have shown that the simplex 8,0¢ is in the
interior of Gyo”(\<1) it will follow that the vertices of 8,0"(u>N) lie
on rectilinear segments, which join the vertices of fy¢” to interior
points of 6ho®. Hence, and since u >N\, they are interior points of
6\a™. Since 0, is a linear map the assertion will follow. Thus we have
to prove that 8,0 is inside 6yo™, or that any point ga/2 (aEe™) is of
the form O\x, for some interior point x&o™. Let p=1/(2—N\). Then

Oapga = (1 — N)pga + Npg2a/2
= p(1 — N/2)ga = ga/2.
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But p <1 since A <1. Therefore pga is an interior point of ¢ and the
assertion is proved.

The set of values A&, such that a given point, x&o", does not
lie in 6yo™, is obviously open. Therefore there is a maximum, ¢(x),
of the values of X such that x E6\o. It follows without difficulty from
the preceeding paragraph that ¢ is a continuous, real-valued function
of x, such that

(a) ¢(x) >0 if x € 6" — 907,
(10.3) (b) ¢(x) =0 if x &€ 9o,
(c) x € brom if, and only if, A < ¢(x).

We now imbed ¢” in ¢»X I, in such a way that x=(x, 0) if xEg™,
and take ¢* to be the simplex 6,0% X 1 and f:e"—0* to be the map given
by

fx = (elx) 1) = (gx/zs 1)

If x is fixed and N varies from 0 to 1 we may regard the locus of the
point (f6yx, N\) as the linear segment in o»X I, which joins xEg* to
JxEa*. If O\x=0\y it follows from (10.2) that gx =gy and from (10.1)
that x =y if N <1. Therefore no two of these linear segments have an
inner point in common and we may take I' to be the union of the
sets Oho" X\ for each NE1. It follows from (10.3c) that I' is the set
of all points (x, N) such that 0 SA=¢(x).

Let ¢:0"—I be the real-valued function which is defined by
Y (pov) =1—p for each vector v&Edo™ and each pE . Then the subset
of »X I, which consists of all points (x, N) such that 0 SA=Y(x), is
the join, ¢»*!, of ¢» and the point (0, 1). A homeomorphism (onto),
h:T'—gn*1, is defined by

h(x, N) = {x, p(2))},

where 0=SA=<¢(x) and p(x) =y (x)/p(x) if xEg"—0dom, p(x)=0 if
x&Edg". Clearly ho»=¢" and o™ is a hemisphere of do"*+!. Therefore
Lemma 35 is established.

Let K, L be simplicial complexes and let f: K—L be a simplicial
map. Let C be the “combinatorial” mapping cylinder of f, defined as
in [1], and T' the “topological” mapping cylinder defined as in §8
above. Let o be any simplex in K and let C,CC, I',CT' be the map-
ping cylinders of the map, o—fo, which is determined by f. It follows
from Lemma 5 that I' is a polyhedral complex, whose (closed) cells
are the simplexes in K and in L and the elements I',, for each simplex,
g, in K. Since I', is an element it may be starred from an internal
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point. Since C, is also a star an easy induction shows that C is com-
binatorially isomorphic to the triangulation of I', which is obtained
by starring the elements I', in order of increasing dimensionality.
Hence the conjecture in the footnote on p. 1235 of [3] is easily
verified.
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