
COMBINATORIAL HOMOTOPY. I 

J. H. C. WHITEHEAD 

1. Introduction. This is the first of a series of papers, whose aim is 
to clarify the theory of "nuclei" and "w-groups" and its relation to 
Reidemeister's1 Überlagerungen. Here we give a new definition of 
"^-groups," or n-types as we now propose to call them. This is stated 
in terms of (» — l)-homotopy types, which were introduced by R. H. 
Fox.2 In a later paper we shall show that this is equivalent to the 
definition in terms of elementary transformations, which was given 
in [ l ] . The series of w-types (w = l, 2, • • • ) is a hierarchy of homot-
opy, and a fortiori of topological invariants. That is to say, if two 
complexes,3 K, L, are of the same w-type, then they are of the same 
ra-type for any m<n, where n S °° and the oo-type means the homot-
opy type. If dim K, dim L ^ n then K, L are of the same homotopy 
type if they are of the same (w + l)-type. Two complexes are of the 
same 2-type if, and only if, their fundamental groups are isomorphic. 
Moreover any (discrete) group is isomorphic to the fundamental 
group of a suitably constructed complex. Therefore the classification 
of complexes according to their 2-types is equivalent to the classifica­
tion of groups by the relation of isomorphism. Thus the w-type 
(n>2) is a natural generalization of a geometrical equivalent of an 
abstract group.4 

Following up this idea we look for a purely algebraic equivalent of 
an w-type when n > 2. An important requirement for such an algebraic 
system is "realizability," in two senses. In the first instance this means 
that there is a complex which is in the appropriate relation to a given 
one of these algebraic systems, just as there is a complex whose funda­
mental group is isomorphic to a given group. The second kind, whose 
importance is underlined by theorems in [5; 6] and in this paper, is 
the "realizability" of homomorphisms, chain mappings, etc., by maps 
of the corresponding complexes. Thus realizability means that the 
algebraic representation is not subject to conditions which can only 
be expressed geometrically. 

An address delivered before the Princeton Meeting of the Society on November 
2, 1946, by invitation of the Committee to Select Hour Speakers for Eastern Sec­
tional Meetings; received by the editors July 19, 1948. 

1 See [l] , [3] and [8, p. 177], Numbers in brackets refer to the references cited 
at the end of the paper. 

2 See [9, p. 343] and [10, p. 49]. 
3 I.e., CW-complexes, as defined in §5 below. 
4 I.e., the class of groups which are isomorphic to a given group. 
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What has been achieved so far is a purely algebraic description 
of the homotopy type of any 3-dimensional complex (see [3]) and of 
any finite, simply-connected, 4-dimensional complex. An account of 
the former will be given in Paper II of this series and of the latter in 
[S]. This and Theorem 6 below lead to an algebraic description of the 
3-type of any complex and of the 4-type of any simply-connected, 
finite complex. The theorem on the realizability of chain-mappings, 
which applies to the 3-dimensional complexes, will be generalized to 
what we call Jm-complexes, which are defined in §3 below. 

The algebraic apparatus used in [5] and in Paper II is inadequate 
for the classification of homotopy classes of maps of such complexes. 
Each homotopy class of maps induces a unique equivalence class of 
algebraic maps. Moreover each algebraic map, of the appropriate 
algebraic type, has a geometrical realization. But in general the 
homotopy class of the latter is not unique. For example in the case of a 
simply-connected, 3-dimensional complex our algebraic system sim­
ply consists of the ordinary chain groups and all maps of a 3-sphere 
in a 2-sphere lead to the same equivalence class of chain mappings. 
Thus our results are complementary to much of the recent work on 
the algebraic classification of mappings (e.g. [ l l ] ) . 

In this presentation we abandon simplicial complexes in favor of 
cell complexes. This first part consists of geometrical preliminaries, 
including some elementary propositions concerning what we call clo­
sure finite complexes with weak topology, abbreviated to CWr-complexes y 

which are defined in §5 below. There are two main reasons why we 
do not confine ourselves to finite complexes. The first is that we want 
to include such simple spaces as open manifolds or, more generally, 
infinite but locally finite complexes. The second is that we have a 
great deal to do with covering complexes. We do not restrict our­
selves to locally finite complexes because this restriction would be 
troublesome when considering "mapping cylinders" of infinite com­
plexes. Also we want to allow for such operations as shrinking an 
infinite subcomplex (e.g., a tree containing all the 0-cells) into a 
point. 

We recall from [ó] that a space, P , dominates a space, X, if, and 
only if, there are maps, \:X—>P, X':P—»X, such that X'X~1. We 
show that the theorems in [6] can be extended to non-compact 
spaces, which are dominated by CW-complexes. To do this we give 
a new and possibly5 more restrictive definition of w-homotopy. Ac­
cording to Fox, m a p s / , g:X—>F, of any space X in a space F, are 
w-homotopic, written f^ng, if, and only if, /<£~g0, for every map, 

6 See §7 below. 
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4> : Kn—>X, of every finite simplicial complex, Kn, of at most n dimen­
sions. We alter this by defining f^ng if, and only if, /<£~g$ for every 
map, <[>:Kn—>X, of every CW-complex, Kn, of at most n dimensions. 
As in [ó] we describe a map, f".X—»F, as an w-homotopy equivalence 
if, and only if, it has an n-homotopy inverse, meaning a map, g: Y—>X, 
such that g/~wl , /g~ w l . A homotopy equivalence is similarly defined 
in terms of ordinary homotopy. We shall use the symbol 

X^nY 

to mean that X and Y are of the same w-homotopy type (i.e. there is 
an ^-homotopy equivalence / :X-»F) and X^ Y will mean that X 
and Y are of the same homotopy type. 

Let a be the class of all connected spaces, each of which is domi­
nated by some CW-complex.6 Let a 0 O be the subclass consisting of 
spaces which are locally simply-connected in the weak sense. That is 
to say, if X £ a 0 there is a basic set of neighborhoods in X, such that 
any closed curve in one of these neighborhoods is contractible to a 
point in X. The universal covering space, J?, of such a space has the 
usual properties. If X is dominated by a CW-complex of finite dimen­
sionality we shall use AX to denote the minimum dimensionality pf 
all CW-complexes which dominate X. If none of the CW-complexes, 
which dominate X, has finite dimensionality we write A-X" = oo. We 
restate the theorems in [ó], which now refer to spaces X, Y Cot and 
to the new definition of w-homotopy. Let fn\irn{X)—»7rw(F) be the 
homomorphism induced by a map f:X—>Y (w = l, 2, • • • ) and let 
7V = max (AX, AF)goo. 

THEOREM 1. The mapf:X-*Yis a homotopy equivalence if, and only 
ift fn'^n(X)-^7rn(Y) is an isomorphism onto for every n such that 
l£n<N+l. 

THEOREM 2. The map f:X—>Y is an (iV— 1)-homotopy equivalence 
if, and only if,fn is an isomorphism onto for every n such that l^n<N. 

Let X, YQao and let X, F be the universal covering spaces of X, 
F, with base points xoGX and yo=fXoS F. As explained in [ó], the 
map /:X—>F induces homomorphisms Hn(X)—:>Hn(¥), where Hn 

indicates the nth homology group, defined in terms of singular cycles. 
The argument given in [ô] shows that Hn(%) =0, Hn(Y) =0 if n>N. 

6 A space in a must satisfy the usual union and intersection axioms for closed and 
open sets but need not satisfy any separation axioms. For example, a single point 
need not be a closed subset. It follows from (M) in §5 below that any connected 
CW-complex is arcwise connected. Hence it is easily proved that every space in a is 
arcwise connected. 



216 J. H. C. WHITEHEAD [March 

THEOREM 3. The mapf:X—>Yis a homotopy equivalence if, and only 
if f each of the induced homomorphisms /r.7Ti(X)—»7Ti(F) and Hn(X) 
—>Hn(Y) is an isomorphism onto. 

Let iV<oo. 

THEOREM 4. The mapf:X—>Yis an (N — 1)-homotopy equivalence if 
(a) each of the induced homomorphisms fiiTi(X)—>7ri(F), Hn(X) 

-*Hn(Y) is an isomorphism onto, for n = 0, • • • , N—2, and also 
(b) the induced homomorphism HN-I(X)~^HN--I(Y) is onto and 
(c) /jsr-i:7Tjv-i(X)"->7riv-i(F) is an isomorphism into. 

Conversely if f:X—*Y is an (N"—1)-homotopy equivalence,7 so is the 
lifted map, /:X—»F, and Hn(X)—>Hn(Y) is an isomorphism onto f or 
n = 0, - • • , J V - l . 

2. w-types. Let K, L be CTF-complexes. A map f:K^>L is said to 
be cellular if, and only if, fKnQLn for each n^O, where Kn, Ln are 
the n sections of K, L. A homotopy ft:K—>L is said to be cellular if, 
and only if, the m a p s / 0 , / i are cellular and ftK

n(ZLn+1 for each n^O. 
According to (L), in §5 below, any map K—>L is nomotopic to a cel­
lular map and if foC^fi'.K—>L, where fo,fi are cellular, then there is a 
cellular homotopy ft:K--*L. Let fo, fiiL—>X be maps of L in any 
space X and le t /o^n/ i . Then /o0~jfi$ for any map, <t>:Kn—>L, of any 
CW-complex, i£n, of at most n dimensions. In particular fo\Ln 

~/ i |Z , n . But 0 is homotopic to a cellular map, <t>'\Kn-^>L, and if 
/o |Z , w ~/ i | l , n we have frfc^frf'^frf'^ftf. Therefore fo^nfi if, and 
only if, /o|jLn^jfi|Ln. If dim L^n then fo^nfi obviously means 
jfo^jfi. If will be convenient to allow w to take the value oo on the 
understanding that L^ — L and that/o^oo/i and K^E^L mean / o ^ / i 
and K^L. 

We shall say that CW-complexes, i£, L, are of the same n-type 
( l ^ w ^ o o ) if, and only if, i£w = w_iLw. If dim K, dim L^n, then 
Zn+i = x w = X(X = i£ or L) and K"+l^nL

n+x means JSTsL. 

THEOREM 5. If K and L are of the same n-type (2^n^ oo) then 
they are of the same m-type for any m<n. 

Let f:Kn—>Ln be an (w — 1)-homotopy equivalence and let g:Ln 

—*Kn be an (» —1) -homotopy inverse of/. We may assume that ƒ and 
g are cellular maps and also that there are cellular homotopies, 
£t:K

n-l->Kn, rit\Ln-l->Ln, such that £o = gf\K"-\ êi = l, 7]^fg\Ln-1, 
7 By taking X to be a 2-sphere and F to be a complex projective plane one sees 

that flX—>Y need not be an (N— lHiomotopy equivalence (iV=4) even though the 
induced homomorphisms /i and Hn(X)—>Hn(¥) are isomorphisms onto for» =1 , • • -, 
N-l. 
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i?i = l, where 1 stands for both identical maps Kn~l—>Kn, Ln~l~*Ln. 
Let fm:Km-*Lm , gm\Lm—^Km be the maps induced b y / , g ( i .e . / m £=/£, 
gmq~gq, where p£:Km, qÇ£Lm). Since ^tK

m"lC.Km it follows that 
gmfm\Km~'1c^.\. (in Km). Therefore gmfmc^m_1l. Similarly / w g m ^m-i l , 
whence i£ m = m _ i i> and the theorem is proved. 

It follows from Theorem 5 that the w-type is an invariant of the 
homotopy type (i.e. is the same for two complexes of the same homot-
opy type). I t is a fortiori a topological invariant. Since a CW-
complex is locally contractible, according to (M) in §5 below, each 
component is arcwise connected. Therefore two CW-complexes have 
the same 1-type if, and only if, they have the same cardinal number of 
components. I t also follows from the results in §5 below, and the 
argument used in the finite case,8 that connected CW-complexes, 
K, L, have the same 2-type if, and only if, ir\(K) «7TI (L) . We now as­
sume, until §4, that any given complex is connected and that # = 2 
in statements concerning w-homotopy and w-types. 

These ideas provide a generalization of a result due to Hopf,9 on 
the relation between the fundamental group and the second homology 
group of a polyhedron. For let X be any space and let Gn(X) be the 
residue group 

Gn(X) = Hn(X) - Sn(X), 

where Sn(X)C.Hn(X) is the sub-group whose elements are repre­
sented by spherical cycles. Le t / , g:X—>Y be maps of X in a space F. 
It may be proved that,10 if / ~ n _ ! g , then ƒ and g induce the same 
homomorphism Gn(X)—»Gn(F). I t follows that, if X = n_iF, then 
GW(X)«GW(F). In case X, Y are CW-complexes this also follows 
from: 

THEOREM 6. If Kl^n^Kl then 

where 2* (i = l, 2) is a set of (disjoint) n-cells, whose closures are n-
spheres, attached to ICI at a single point, 2? being a finite set of cells if 
K\, K\ are finite complexes. 

This is Theorem 13 in11 [ l ] , restated in terms of CW-complexes 

8 See [16, pp. 217, 213], and [18, 3.1, 3.2 on p. 29]. 
9 See [17] and [l8]. See also [l, Theorems 12 and 13, pp. 266, 269]. 
10 This is easily proved on the assumption that any homology class in Hn(X) has 

a representative (singular) cycle, which is also a continuous cycle (i.e., the image in a 
map, Kn->X, of a cycle carried by a finite, w-dimensional, simplicial complex Kn). 

11 [ l] , p. 269 for finite and p. 324 for infinite complexes. 



218 J. H. C. WHITEHEAD [March 

and the new definition of the w-type. We shall give another proof in a 
later paper. 

Another corollary of Theorem 6, and of Theorem 19 in [ l ] is: 

COROLLARY 1. If Kn
x = n-iKl then12 

where + indicates direct summation and Mi is a free Wi-module, 9î» 
being the group ring of ir\(Ki) with integral coefficients. 

Another obvious corollary of Theorem 6, which is also easy to 
prove directly, is: 

COROLLARY 2. If K\ and K\ are of the same n-type, so are their uni­
versal covering complexes, K" and K^. 

Hence, using Gn{X) to mean the same as before, with X=K%, we 
have: 

COROLLARY 3. If K\ = n^Kl then Gn(X?) ~Gn(K
n
2). 

3. Jm-complexes. Let K be a, (connected) CW-complex and let a 
0-cell, e°, be taken as base point for all the groups Tn(K

n
t Kn~l), 

irr(K
r) (n^2, r ^ l ) . Let pn = 7rn(j£

w, Kn~l) and let jn:wn(K
n)->pn be 

the homomorphism induced by the identical map (Kn, e0)—>(Kn, 
Kn~"1). We shall describe K as a Jm-complex if, and only if, j n is an 
isomorphism into pn for each w = 2, • • • , m. Obviously K is a Jm-
complex if, and only if, Km is a j^-complex. We shall prove that the 
property of being a /^-complex is an invariant of the m-type. That 
is to say, if Km=m-\Lm and if K is a Jm-complex so is L. 

Let j8n:pw-^xn_i(i^n~1)(w^2) be the (homotopy) boundary homo­
morphism and let 

dn = jn-*lfin • Pn "-* Pn-1» 

where pi = ir^K1) and j \ = 1. Then dnjn = 0 and dndn+i = 0 since (3njn = 0. 
Let 4:7rn(i£n~1)--»7rn(i£n) be the homomorphism induced by the 
identical map Kn~l-^Kn. 

We now prove two theorems which are closely related to Theorem 
1 in [25]. 

THEOREM 7. The homomorphism jniTn(K
n)—>pnisinto dnl(0) (n^2). 

12 In each of Corollaries 1 and 3 the symbol « means that there is an operator 
isomorphism (onto), which is defined in terms of the isomorphism, TTI(K^)—>7ri(i££), 
induced by an (« — l)-homotopy equivalence K^—*K^, Compare Corollary 3 with 
Theorem 28.1 on p. 414 of [13]. 
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2/ is: 
(a) an isomorphism {into) if, and only if, inWniK"-1) = 0 and is 
(b) onto d^\0) ifin-nrn^K"-*)^. 

The fact that jn^n{Kn)Qd^l{0) follows from the relation dnjn = 0. 
The assertion (a) follows at once from the exactness of the homotopy 
sequence 

(3 . 1) TriK'-1) 4 TTr(K
r) 4 *>(£', Kr~l) ^ Tr-l(K>-1), 

with r = n. Let a G ^ ^ O ) be given (n*z2). Since dna=jn-il3na = 0 it 
follows from the exactness of (3.1) with r = n — 1 and 7TI(K°) —T0(K

Q) 
= 0 in case n = 2, that ^naÇ:in-.iTrn~\{Kn~2). Therefore |3na=0 if 
in-.iTn-i(K

n~2) = 0 and it follows from the exactness of (3.1), with 
r = n, that aÇzjnwn(K

n). This completes the proof. 
Since ^(K1) = 0 it follows from Theorem 7 that any complex is a 

/2-complex. Also j*2 is onto ^ ( O ) =]3j1(0) by the exactness of (3.1) 
with r = 2. In general we have: 

COROLLARY. A complex, K, is a Jm-complex if, and only if, inTrn(K
n-1) 

= 0forn = 2, • • • , m. In this case jris ontod^(0) for r = 2, • • • ,m + l. 

Let TI(K) = 1. Then the groups pn (n>2) and pi, p2 made Abelian 
may be taken as chain-groups.13 The homology group, Hn(K), may 
be defined as the residue group 

(3.2) Hn(K) = dn (0) — Jn+ipw+i = dn (0) — yn/?n+ipn4.i. 

I t follows from (L), in §5 below, that we may take 

(3.3) Tn(K) = T»(£"+ l) = T»(X») ~ ^n+lPn+1. 

Therefore j n determines a homomorphism j^:irn(K)-*Hn(K). 

THEOREM 8. If wi(K) = 1 awd if i£ « a Jm-complex, then jt:irn{K) 
—*Hn{K) is an isomorphism onto f or n~l, • • • , m andjm+1 is onto. 

This is an immediate consequence of (3.2), (3.3) and Theorem 7 
and its corollary. 

We shall say that a space Y, n-dominates a space X if, and only if, 
there is a map, f:X—>Y, which has a left w-homotopy inverse, mean­
ing a map g: Y-*X such that g / ^ n l . 

THEOREM 9. If a CW-complex, K, is (m — 1)-dominated by a Jm-
complex, L, then K is a Jm-complex. 

13 Cf. [ó], [5], For the definition of Hn(K) in terms of the relative homology groups 
Hn(K

n, Kn~x), treated as chain groups, see [14]. 
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Let f:K-^>L and g'.L—^K be cellular maps such that g/^m-i l . Since 
ƒ, g are cellular they induce homomorphisms 

önlinTniK"-1) -> ^ « ( i ^ 1 ) , 

Tpn'.inTniL"-1) - > in^K^1). 

Let ^t:K
m-1-^Km be a cellular homotopy such that £o = gf| i £ m - \ £1 = 1. 

Let 2^n^m. Then £ei^n~1C^n and it follows that ypn^n^otn, where 
an is an automorphism of inTrn{Kn~l). Therefore \f/n is onto. But 
inTrn{Ln~1) = 0, by the corollary to Theorem 7. Therefore inirn{Kn~l) 
= 0, whence i£ is a Jm-complex and Theorem 9 is proved. 

If KmzEm-iLm then Km and Z> (ra —1)-dominate each other. There­
fore we have the corollary: 

COROLLARY. The property of being a Jm-complex is an invariant of the 
ni-type. 

Let K be a CW-complex such that irn{K) = 0 for n = 1, • • • , m — 1* 
Then it follows from Theorem 2 that the map Km-^L° is an (m — 1)-
homotopy equivalence, where L° is a single point. Since L° is (obvi­
ously) a Jm-complex it follows from Theorem 9 that Km and hence 
K is a Jw-complex. Therefore Theorem 8 includes Hurewicz's re­
sult14 that 7Tm(K)^Hm(K) if Tn(K)=0 for « = 1, • • • , m - 1 . The 
following example of a simply connected 74-complex, K, with 7r3 (iT) F^ 0, 
shows that Theorem 8 is more general than Hurewicz's theorem, re­
stricted to CW-complexes. Let K = e°KJezUe4, where £° is a 0-cell, 
ez is a 3-cell whose closure is a 3-sphere, S3 = e°Ue3, and e4 is attached15 

to Sz by a map, / : d£ 4 -»S 3 , of degree (2r + l ) ( r > 0 ) . Then TZ(K) is 
cyclic of order 2r + l.lil^n^3 then i ^ " 1 = K°f whenceTvn{Kn~l) = 0. 
Let giS^—ïdE* be an essential map. Then fg:S4-^Sz is essential [4, 
Theorem 9, p. 268] and hence represents the nonzero element of 
7r4(5

3). Therefore [2, Lemma 4, p. 418] ùwi(Kz) = 0, whence K is a 
JVcomplex. 

According to (M) and (N) in §5 below, a CW-complex, K, is locally 
contractible and its universal covering complex, K, is also a CW-
complex. 

THEOREM 10. K is a Jm-complex if, and only if, K is a Jm-cornplex. 

This is an obvious consequence of the corollary to Theorem 7. 
14 [15, p. 522]. See also [19, p. 314]. Hurewicz's theorem applies to a larger class 

of spaces than CW-complexes. 
16 See §8 below. We use En to denote an ^-element (i.e. a homeomorph of an 

w-simplex) and dEn to denote its boundary. By a simplex we mean a simplex with 
boundary. 
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Let K be the universal covering complex of a CW-complex K. 
Since TI(K) = 1, irn(K) ^Tn(K) if n> 1 and since L is a Jm-complex if 
7TV(L) = 0 for r = 1, • • • , m — 1 it follows from Theorem 10 that K is a 
Jm-complex if 7rn(i£)=0 for n = 2, • • • , m — 1 . In particular if is a 
J^-complex if its universal covering space is an m-sphere or any 
Euclidean space. 

In Paper II we shall consider "Reidemeister" systems of chain 
groups, C(K)y C(L) and chain mappings C(K)—>C(L), where Ky L> 
are CW-complexes. We shall prove that, if L is a 7m-complex and if 
dim K^m + 1, then any chain mapping, C(K)—^C(L)t can be realized 
by some (cellular) map, K—*L. Hence it follows from Theorem 3 that 
K^L if there is a chain equivalence C(K)-^C(L). If, in addition 
[5, Lemma 4] , K and L are finite, simply-connected complexes, then 
K^L if Hn{K) œHn(L) for all values of n. 

4. Cell complexes.16 By a cell complex, K, or simply a complex, we 
mean a Hausdorff space, which is the union of disjoint (open) cells, 
to be denoted by e, en, e", etc., subject to the following condition. The 
closure, êw, of each w-cell, e n £ i£ , shall be the image of a fixed w-sim­
plex, an, in a map, f:an—>ën, such that 

(4.1) (a) f\an-—dan is a homeomorphism onto en, 
(b) denGKn~1

f where den=fd<jn = ën — en and K71"1 is the (n — l)-
section17 of K, consisting of all the cells whose dimensionalities do not 
exceed n — 1. 

Such a map will be called a characteristic map for the cell en. If 
f\Gn-*ên is a characteristic map for en, so obviously isfh:an—>ën, where 
h:(an, dan)—*(an, dan) is any map such that h\an—dan is a homeo­
morphism of <rn—dan onto itself. No restriction other than denC.Kn~l 

is placed on ƒ | dan. Therefore ên need not coincide, as a point set, with 
a subcomplex of K. Since K, and hence ën> is a Hausdorff space and 
since an is compact it follows that ën has the identification topology 
determined18 by ƒ. A complex is defined as a topological space with a 
certain cell structure. Therefore we shall not need a separate letter to 
denote a complex and the space on which it lies.19 Notice that, in the 
absence of further restrictions, any (Hausdorff) space may be re-

16 The use of these complexes was suggested in [3, p. 1235]. They are now called 
cell complexes, rather than membrane complexes, in conformity with [14]. 

17 Kn is defined for every value of n. If there are no w-cells in K for m>n then 

18 I.e., Y(Zèn is closed if, and only if, / _ 1 F is closed. In other words the closed sets 
in ën are precisely the sets fX for every closed set, X(Z<rn> which is saturated with 
respect t o / , meaning that f~lJX=*X (cf. [23, pp. 61, 95] and [24, p. 52]). 

19 N.B. eÇzK will mean that e is a cell öf the complex K and e<Z.K, êCZK, etc., will 
mean that the sets of points ef ë, etc., are subsets of the space K. 
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garded as a complex. For example, we may take it to be the complex 
K=*K°, which consists entirely of 0-cells, each point in K being a 
0-cell. 

A subcomplex, LQK, is the union of a subset of the cells of K, 
which are the cells of L, such that, if eCZL then êQL. Clearly L is a 
subcomplex if it is the union of a subset of the cells in K, which is a 
closed set of points in K. However the above example shows that a 
subcomplex need not be a closed set of points. Clearly Kn is a sub-
complex, for each w^O, and we admit the empty set as the sub-
complex K~x. Also the union and intersection of any set of subcom­
plexes, finite or infinite, are obviously subcomplexes. If XQK is an 
arbitrary set of points we shall use K(X) to stand for the intersection 
of all the subcomplexes of K, which contain X. Obviously K(p) 
*=K(e) —K(ë), where p is any point in K and eÇ.K is the cell which 
contains p. A finite subcomplex, L (i.e. one which contains but a finite 
number of cells) is a closed, and indeed a compact subset of K. For 
it is the union of the finite aggregate of compact sets, ê, for each cell 
eGL. 

The topological product, K\XK2l of complexes Ki, K2 is a complex, 
whose cells are the products, en^+n^ = e1^Xe1^1 of all pairs of cells 
e"iÇzKi, ep£:K2. For let fi\ani—>ëni (* = 1, 2) be a characteristic map 
for eni, let g:aniX(Tn2~>ëni+n2 be given by g(pi, p2) = (fipi,fcpî) and let 
h:<rni+n2—><rniX<rn2 be a homeomorphism (onto). Then gh:ani+ni 

_»£ni+n2 obviously satisfies the conditions (4.1). Therefore K\XK2 is 
a complex, with this cell structure. In particular KXl is a complex, 
which consists of the cells eXO, eXl, eX(0, 1), for each cell eÇ.K, 
where (0, 1) is the open interval 0 < / < l . 

Let if be a locally connected complex, let K be a (locally connected) 
covering space of K and let p : K—*K be the covering map. That is to 
say there is a basis, { U], for the open sets in K such that, if £ /£ { U} 
then p maps each component of p~1U homeomorphically onto U 
(cf. [20, p. 40]). Let xÇÎK be a given point and let enGK be the cell 
which contains x=px. Then a characteristic map, f:<xn—>ën

f can be 
"lifted" into a unique map,20 f:an-^>K, such that/=p/and](f~~ lx) =x. 
Let en=f(<Tn-d(rn) and l e t p 0 = p | £ n . Then f\crn-dan=po(f\<Tn-d<rn) 
and since ƒ | <rn — dan is a (1-1) map onto en it follows tha tpo is (1-1) 
and is onto en. Since p , and hence p 0 , is an open mapping it follows 
that po is a homeomorphism. Since 

ƒ | o" - da" = po ( / | er" - da*) 
20 See [21, Theorem 2, p. 40] or [22]. We shall sometimes use the same symbol, 

ƒ or g, to denote two maps, f lA—>JB, g:A—>C(ZB, such that fa—ga for each point 
aÇzA, even though B 9^C. 
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it follows that ƒ| an~-d<jn is a homeomorphism, which, according to 
the definition of en, is onto en. Also /â<jnC-^n~1=P"'1ifw'"1. Therefore ƒ 
satisfies the conditions (4.1). I t follows that K is a complex, each of 
whose cells is mapped by p homeomorphically onto a cell of if. 

Let Q be a subcomplex of K and let e be a given cell in (). Then 
pë is closed, since ë is compact, and pëQpQ. Therefore pe=pë(ZpQ-
Therefore pQ is a subcomplex of if, which consists of the cells pe for 
each cell e £ Q . 

5. CW-complexes. We shall describe a complex, K, as closure finite 
if, and only if, if (e) is a finite subcomplex, for every cell #£ i f . Since 
K(p)=K(e) if £ £ e this is equivalent to the condition that K(p) is 
finite for each point £ £ i f . If LQK is a subcomplex and e £ L then 
obviously L(e)=K(e). Therefore any subcomplex of a closure finite 
complex is closure finite. 

We shall say that K has the weak topology (cf. [l, pp. 316, 317]) if, 
and only if, a subset XQK is closed (open) provided XC\e is closed 
(relatively open) for each cell tf£if. If K is closure finite this is 
equivalent to the condition that X is closed provided XC\L is closed 
for every finite subcomplex LQK. For XC\L is the union of the finite 
number of sets XC\ë (tfÇZ,). Therefore XC\L is closed if each set 
Xr\ë is closed. Conversely, if XC\L is closed for each finite subcom-
plex, L, and if K(ë) is finite, then XC\ë is closed, since XC\ë 

=xr\K(ë)r\ë. 
By a CW-complex we mean one which is closure finite and has 

the weak topology. Any finite complex, if, is obviously closure finite 
and it has the weak topology since XC.K is the union of the finite 
number of sets X C\ë {e £ if) . Therefore any finite complex is a CW-
complex. Also a complex, if, is a CW-complex if it is locally finite, 
meaning that each point pÇ^K is an inner point of some finite sub-
complex of if. For let if be locally finite. Then if (p) is finite, for each 
point pÇzK. Therefore if is closure finite. Let XC.K be such that 
XC\L is closed for each finite subcomplex LC.K- Let L be a finite 
subcomplex of which a given point pÇ^K — X is an inner point. Since 
XC\L is closed, p is an inner point of L — X' = L — (XC\L). Therefore 
X is closed and if has the weak topology. It may be verified that the 
number of cells, and hence the number of finite subcomplexes of a 
connected, locally finite complex, if, is countable. Hence, and from 
(G) below, it may be proved that if is a separable metric space. 

If the cells in a CW-complex, if, have a maximum dimensionality 
we call this the dimensionality, dim if, of if. If there is no such 
maximum we write dim if = 00. 

Examples of complexes which are not CW-complexes are: 
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(1) dan (n>l) regarded as a "O-dimensional" complex, K°, whose 
cells are the points of 5crw. This is closure finite but does not have the 
weak topology. 

(2) <rn (n>l), regarded as a complex Kn = K°^Jen, where en = an 

—dan and K° — dan, as in (1). This has the weak topology, since 
ên = Kn, but is not closure finite. 

(3) a simplicial complex, which has a metric topology but which 
is not locally finite (e.g. a complex covering the coordinate axes in 
Hilbert space). The weak topology in such a complex cannot be 
metricized (cf. [l, pp. 316, 317]). 

Let K be a CW-complex. We establish some properties of K. 
(A) A map,f:X—>Y, of a closed (open) subset, XC.K, in any space, 

Y, is continuous provided f\ XC\ë is continuous f or each cell eÇ.K. 
Let fe=f\xr\e be continuous, for each cell e £ i £ . Let Fo be any 

closed (open) subset of F. Obviously êP\f"1Fo=/71Fo and it follows 
from the continuity of fe that ëC^f"1 F0 is a relatively closed (open) 
subset of XC\ë. But XC\ë is a closed (relatively open) subset of ë, 
whence ëC\f~l F0 is closed (relatively open) in ë. Therefore f~l F0 is 
closed (open) in K, and a fortiori in X. Therefore ƒ is continuous. 

(B) A subcomplex, LC.K, is a closed subspace of K and the topology 
induced by K is the weak topology in L. 

Let YÇ_L be such that YC\LQ is closed, and hence compact, for 
each finite subcomplex LodL. Since YC\LQ is compact it is a closed 
subset of K. Let KQ be any finite subcomplex of K. Then Lo=*Lr\K0 

is a finite subcomplex of L and 

F H Ko= Yr\Lr\Ko=Yr\L0. 

Therefore YC\K<s is closed, whence F is closed in K, and a fortiori in 
L. Therefore L has the weak topology. Also, taking Y=L, it follows 
that L is closed, which establishes (B). 

(C) If K is connected so is Kn for each n>0. 
Let n>0 and let Kn be the union of disjoint, nonvacuous closed 

sets ICI, K%. Since the closure of a cell eÇzK is connected it follows 
that ëCKÏ if eC\lCi ^ 0 (*'= 1, 2). Therefore XJ is a subcomplex of K. 
Clearly den+1 is connected (e n + 1 £i£) , whence it lies either in K\ or in 
K%. Therefore Kn+l is the union of disjoint subcomplexes, i£?+1, 
J53+1, where Z ? C ^ ? + 1 and e*+1GX?+1 if den+1CKl A similar (induc­
tive) argument shows that Km is the union of disjoint subcomplexes, 
X? f JK?, such that K?CK+\m, = n, n + 1, • • • ). Let 2^ be the union 
of the K? for m=n, n + 1, • • • . Then KiCsK^^IC? and 

ISTX n #2 = u (id n i 2 ) n f = u K™r\ KX = o. 
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Also Ki 5^0, since K^CKi, and Ki is a closed subset of Ky according to 
(B). Therefore K is not connected, which establishes (C). 

(D) If X<ZK is compact, then K{X) is a finite complex. 
If X meets but a finite number of cells, e\, • * • , euCK, it is con­

tained in the finite union of the (finite) subcomplexes K(e{)i • • • , 
K(ek). Assume that there is an infinite set of cells, {d}, each of which 
meets X and let piÇz.XC\ei. Then a finite subcomplex, LQK, con­
tains but a finite set of the cells in {ei} and ea/"\L = 0 unless £*£L. 
Therefore L contains but a finite number of points in the set P = {pi}, 
whence P is closed. Similarly any subset of P is closed, whence P is 
discrete. But this is absurd, since P is compact, being a closed subset 
of X. Therefore (D) is established. 

(E) If a complex L, and also Ln for each w^O, all have the weak 
topology, then L is a CW-complex. 

Certainly L° is closure finite. Assume that Ln~l is closure finite, 
and hence a CW-complex, for some n>0. Let en be a given w-cell in 
Ln. Since den is compact it follows from (D) that L{den) is finite. 
But obviously L(en) = L(dew)Uen and it follows from induction on n 
that L is closure finite, which establishes (E). 

Let f:K—>L be a map of K onto a closure finite complex i , which 
has the indentification topology18 determined by ƒ. Further let the 
subcomplex L(fë) be finite for each cell eÇzK. 

(F) Subject to these conditions L is a CW-complex. 
Let YQL be such that YC\L0 is closed for each finite subcomplex 

L0C.L. Let L0ë=L(/ê) for a given cell e £ i £ . Then ëQf^Lo and 

f-iy r\ ë = f-*Y r\êr\êc (f~xY n /-^o) n 1 c /"H^ n £0) n «, 
since f-^AC\f~xB<Zf-\AC\B) for any sets 4 , B C L . B u t / ^ ( F n L o ) 
C / - 1 F. Therefore 

/ - i F C\ ë = / " H F H Lo) H ê. 

Since FP\L0 is closed it follows that f~l YC\ë is closed. Therefore/""1 F 
is closed, since K has the weak topology. Since L has the identifica­
tion topology determined by ƒ it follows that F is closed. Therefore 
L has the weak topology. Since L is closure finite by hypothesis this 
proves (F). 

(G) K is a normal space. 
Let Xu X2C.K be disjoint, closed subsets and let XT

t — XiC\Kr 

(i = l, 2; r^O). Clearly K° is a discrete set, and hence normal. Let 
n>0 and assume that there are disjoint, relatively open subsets, 
Unr\ Un

2~
lCK--\ such that X ^ C C / f " 1 . Then X / Y t ^ - ^ O 

(*, j = l, 2; i ^ j ) . If Kn = Kn~l we define UÎ^Ui"1. Otherwise let 
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f\<sn-*ln be a characteristic map for a given w-cell enÇ.K and let 

Since Xxr\X2 = 0, X / M ^ " 1 = 0 we have YXC\ F2 = 0, F.HFy = 0. Let pQ 

be the centroid of an and let r, p be polar coordinates for <rn ( r £ J , 
p&an) such that (r, £) is the point which divides the rectilinear 
segment pop in the ratio r:l—r. Let VI O n be the (open) subset, 
which consists of all points (r, p) with £ G F» and 1 — e <r ^ 1, where 
0 < e < 1. Since F»H F, = 0 it follows that, if e is sufficiently small, then 
YiCXVj = 0, which we assume to be the case. Since fYiCZXi, fdan 

CK"-1 and X / Y K ^ C Ü ? " 1 it follows that F ^ ^ C ^ . Let F / ' 
be an ^-neighborhood of F», denned in terms of a metric for crn, 
where 77 is so small that V{'CW^ = 0, F / ' H ? / = 0 and F," 
n ( 3 c r » - F « ) = 0 . Then V?r\d**CV{. Let 

TF*= F/ U F I ' . 

Then F^CTF* and W W 2 = 0. Obviously VlC\d<jn=Vi, whence 

(5.1) Wi n do-" = Fi = ƒ" V r 1 . 

Since/:o-n—3crn is a (1-1) map onto en and fdanr\en — 0 it follows that 
IF» is saturated18 with respect t o / . Therefore ƒ PF» is a relatively open 
subset of ên. From (5.1) we have 

(5.2) ƒ Wi n tf*"1 = t/r1 n a«" 
and it follows that ƒTFiH/IF2 = 0. 

Let us write IF» = Wi(en) and let 

tf = uV \J u /PF,(en). 
enGK 

Then it follows from (5.2) that U^nK^1^ f/?"1 and that 

Also fWi(e
n)CKn-1KJen and U^r\en^fWi{en)r\en. Therefore 

[/Inett = ([/Ina;)U({/?n;) 
= /TFt(e

n)n(ü:w~1u,n) 
= / ^ ( / ) . 

Therefore £/? is a relatively open subset of Kn. Obviously XÏC.U" 
and t / ? n [/2 = 0. Therefore such sets, £/?, may be defined inductively 
for every value of n. Let them be so defined and let 
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Ui = U UÏ. 
n 

Since U?+1nK"= Z7? it follows by induction on m>n that 

u7r\Kn= u? r\ K^1 r\Kn= u?'1 r\Kn= ul 
and hence that [7»nXn=Z7?. Therefore it follows, first that Z7» is 
an open subset of K and second that UiC\ Z72 = 0. Obviously XiQ Ui, 
which completes the proof of (G). 

(H) If L is a locally finite21 complex then KXL is a CW-complex. 
If eÇzK, e'EL are cells in K and L respectively, then the cell 

eXe'EKXL is contained in the finite subcomplex K(e)XL(e') 
QKXL. Therefore KXL is closure finite. 

Let the cells in K be indexed and with each ra-cell, e?EK, 
(m = 0, 1, • • • ) let us associate an m-element, E™, as follows. The 
points in ET shall be the pairs (#, e?), for every point x£<rw, and E<* 
shall have the topology which makes the map x—>(x, e?) a homeo-
morphism. No two of these elements have a point in common and 
we unite them into a topological space, 

P = U E?, 
m,i 

in which each E™, with its own topology, is both open and closed. 
Let fr:am-*ëf? be a characteristic map for e? and let <f>:P-+K be the 
map which is given by 0(#, e?) = / fx , for each point (#, e™) £ P . Since 
ë™ has the identification topology determined by f? it follows that 
the weak topology in K is the identification topology determined by </>. 

Let a space, 

Q = U El 

and a map, xf/lQ-^L, be similarly associated with L. Then KXL 
= 6(PXQ), where d:PXQ-*KXL is given by 0(p, g) = (<W>, H) 
(PEP, gGÖ). Also PXQ is the union of the (m+n)-elements Ef XE", 
and 0(£TX£?) = ^ + n , where «J+ ' - t fXeJ 1 . Therefore the weak topol­
ogy in KXL is obviously the same as the identification topology 
determined by 0. 

Let VCZL be an open subset and y G ^ a n arbitrary point in V. 
Since ;y is an inner point of a finite subcomplex, LoCL, it is contained 
in a subset, F 0 C FHLo, which is open in L. Since L is normal there is 
a neighborhood, PF, of y such that IFCl^o. Since WC.V0CL0 and 

I do not know if this restriction on L is necessary. 
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since V0 is open in L, it follows that wr\e = 0 for any cell eE.L—L0. 
Therefore there are only a finite number of cells in Z,, whose closures 
meet W. Therefore xf/^W is contained in the union of a finite subset of 
the components EJ*C(?. Therefore ^rxW is compact and (H) fol­
lows from Lemma 4 in [7]. 

(I) A homotopy, ft:X—>Y, of a closed (open) subset, XC.K, in an 
arbitrary space, Y, is continuous provided f%\XC\ê is continuous for 
each cell eÇ^K. 

This follows from (H), with L = I, and (A), applied to the subset 
XXKZKXIand the map f:XXl—»F, which is given by f(x, t) =ftx. 

(J) (Homotopy extension.) LetfoiK—^X be a given map of K in an 
arbitrary space X. Let gt:L—>X be a homotopy of go=fo\L, where L is 
a subcomplex of K. Then there is a homotopy, ft:K-^X, such that 
ft\L = gt. 

Let Kr = L\JKr ( r ^ — 1 ; 2£_i = L) and assume that gt has been 
extended to a homotopy, ƒ ?" l : Kn-i—>X, such that f%~1=fo\Kn-i, 
ft~1\L = gt (n^O). The homotopy/?" 1 can be extended throughout 
Kn-iUen> for each w-cell22 ew£i£n—L, and hence, by (I), to a (con­
tinuous) homotopy ƒ?: Kn—>X. Starting with fr1==gt it follows by 
induction on n that there is a sequence of homotopies, f?:Kn-^>X 
(» = 0, 1, • • • ), such that /o = ƒ o | Kn, / ? | J fn -^ /T" 1 . It follows from 
(I) that a homotopy, ft:K—>X, which satisfies the requirements of 
( J ) , i sg ivenby /* | i£ n =/7 . 

Let XoC-^ iC • • • be a sequence of subspaces of a given space, X, 
such that any map, (<rn, dan)~>(X, Xn-i), is homotopic, rel. dan, to 
a map23 <rn-^Xn (n = 0, 1, • • • )• Let LQK be a given subcomplex, 
which may be empty, and let f0:K-±X be a map such that foLnC.Xn, 
for each n = 0, 1, • • • . 

(K) There is a homotopy, ft:K-*X, rel. L, such that f\KnC.Xn for 
each n = 0, 1, • • • . 

Since each point in X is joined by an arc to some point in X0 there 
is a homotopy, f°t;K°->X, rel. L\ such that ƒ g ==ƒ01 i^° and/? i£ 0 CX 0 . 
Let n>0 and assume that there is a homotopy jT"1: Kn~~l-^X, rel. 
L~-\ such t h a t ^ - ^ / o l ^ - 1 , / T ^ ^ C X n - i . It follows from (J) 
t h a t / f " 1 can be extended, first throughout Ln by writing f?~1\Ln 

=/o |L n , and then to a homotopy, %t:K
n-*X, rel. Z> (£0=/o|i£w). 

Since ^1üCn~1C-X"n-i it follows from a standard argument (see [6, §8]), 
and the condition on X0, Xi, • • • , that there is a homotopy, rç*:i£n 

->X, rel. {Kn~x\JLn), such that rço = êi, ?7iifnCXn. If dim JST < <*> we 
22 See [5, Lemma 10 in §16]. 
23 If n = 0 this simply means that each point in -X" is joined by an arc to some point 

in Xo' 
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define Jf: Kn—>X as the resultant of %t followed by r\t. Then f I may be 
defined inductively for every n^O and we take ft=jT> where m = dim 
K. But if dim K = <*> this method fails and we shall define ƒ * as an 
extension of j/f-1, not as the resultant of £* followed by rjt. 

If Kn = Kn~1 we define f?=f?~~\ Otherwise let g\on->ên be a char­
acteristic map for a given w-cell enÇzK. Let r, p be polar coordinates 
for <sn, defined as in (G), and let pt\ë

n—>X be defined by 

(5 3) P * ( f ' ^ = * 2 < / ( 1 + r ) ^ ' ^ (if 0 ^ 2/ ^ 1 + r) 
= nvt-i^/a-^gir, p) (if 1 + r < It ^ 2). 

Since 770 = £1 and g _ 1 | e n is a homeomorphism onto an—dan it follows 
that pt\ en is single-valued and continuous. Since ptx = ̂ tx for any point 
# = &(1> p)&en it follows that p* is single-valued. Also pt is continu­
ous at {g(r, p), t} if r<l and, obviously, if / < 1 . I say that it is con­
tinuous at \g(l,p), 1} =(gp, 1). For gpEK"-1 and rçt\K

n-1 = r}0\ Kn~l 

= £i\Kn~1. Therefore, given a neighborhood, UC.X, of %igp — ytgp, it 
follows from the compactness of I that there is a neighborhood, 
VQën, of g£ such that rjtx^Ufor every / £ / , provided x G F . There is 
also a neighborhood, F ' O n , of gp, and a S>0 such that £*#££/ if 
x G F ' , 1 - 2 Ô < / ^ 1 . Since ( 2 - 2 S ) / ( l + r ) >1—20 it follows that 
ptxÇîU if x £ F P \ F ' , 1—§</^ l . Therefore pt is continuous. Also 

PtSih P) = ««(I. #) = ir'gih p), 

Pog(r, p) = %0g(r, ƒ>) = /og(r, ƒ>), 

PlgO, #) = ^tffo P) G •*». 

Therefore a homotopy, ƒ?:Kn—>X, rel. Ln , such that 

ƒ M K = ft 9 fo = fo\ K , fiK C Xn, 

is defined by fî\K"-l=fî-\ j?\ ën=Pt, for each «-cell ewGi£w. It fol­
lows from induction on n that such a homotopy is defined for each 
n^O and a homotopy, ft:K—>X, which satisfies the requirements of 
(K), is defined by ft\ Kn=f?. 

Let f0:K—>P be a map of K into a CW-complex, P , such that 
fo\L is cellular, where LC.K is a subcomplex. Also let gt:K—>P be a 
homotopy such that the maps go, gi and the homotopy gt\ L are cellu­
lar. 

(L) There is a homotopy, ft\K—»P, rel. L, of fo into a cellular map 
/ i . There is a cellular homotopy, gl :K—>P, such that go =go, g{ =gi, 
gl\L=gt\L. 

Since any continuous image of an in P is compact it is contained in 
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a finite subcomplex QC.P, according to (D). Any map (<rn, dan) 
-~K(?> Qn~1) is nomotopic,24 rel. dan, in Q to a map <rn—>Qn. Therefore 
the first part follows from (K). The second part follows from the first 
part with K, L, f0 replaced by KXI, ( X X 0 ) U ( L X / ) U ( X X 1 ) , 
g:KXI->P, where g(p, t) =*gtp. 

(M) K is locally contractible. 
Let ao€zK be a given point, let UC.K be a given neighborhood of 

do and let erÇzK be the cell which contains a0. Let ErC.UC\er be an 
r-element, which contains a0 in its interior, F r = E r —3Er, and let 
ƒ[": Vr—>Vr be a homotopy such that ƒ£ = 1, ƒ£ Vr = ao. Using induction 
on n we shall define sequences of relatively open subsets, VnQKn 

(n = r, r+1, • • • ), such that Vn+ir\Kn=* Vn, VnCU, and of homot-
opies ƒ?: Vn->Vn, such that / ? + 1 | F»«/T, /2 = 1, /?F» = a0. Assuming 
that this has been done, let 

n 

and let ƒ*: F—»F be defined by ft\ Vn=f}. Then it follows from the 
definition of the weak topology and from (I) that V is open in K 
and ft continuous. Obviously VQU, /o = l, fiV=a0 and (M) follows. 

Assume that Vn~l and /f"1 satisfy the above conditions for some 
n>r. Let g:o"n—»ên be a characteristic map for a given w-cell, £n£2£, 
and let polar coordinates, r, £, for an be defined as in (G). If gdan 

n F n _ 1 = 0, let W O * be the empty set. Otherwise let WC<rn be the 
(open) subset, which consists of all points, (r, £), such that 

i - € < r ^ i, /> e r 1 ^ - 1 , 

where 0 < e < l . Since T n ~ 1 Ci7, whence g"lTnr'lCe'1U% it follows 
that WCg~lU if e is sufficiently small, which we assume to be the 
case. Let £*: W—>W be the "radial projection," which is defined by 

W'» P) = (r + t~ rt, p)% 

and let OtgW-*V»-1}UgW be given by 

» < ( ' . #) = «&«/d-r>('. #) (if 0 ^ 2/ < 1 — r) 

= /Ül+r ) / ( l+r )« ( l . #) (if 1 - f g 2/ < 2). 

Since fc(l, />) = (1, p) and 2&(rf p) = g(l , £) = ^ _ 1 g ( l , p) it follows from 
an argument similar to the one which comes after (5.3) that dt is 
single-valued and continuous. Also 

24 [5, §16, Theorem 6]. It follows from Theorem 6 in [5] that the condition 
ftxÇzPCfox) (xÇzK) may be imposed on the homotopy ƒ< in (L). 
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(5.4) 60g(r, p) = gio(r, p) = g(r, J) , 

M', *) = /r^(l, p) = ao. 
Let Fw be the union of Vn~x and the sets gWy which are thus de­

fined for all the w-cells in K. Arguments used in (G) show that Vn 

is a relatively open subset of Kn and that Vnr\Kn~l = F n _ 1 . Also it 
follows from the definition of W that danr\W(Zg~1Vn'~1, whence 

Kn~l C\gW C Vn~\ 

Hence it follows from the definition of the weak topology that Vn 

is the union of Vn~x and the sets gW, which are closed since W is 
compact. Since V^CU, WCg^U it follows tha t VnCU. Finally 
define ff: Vn->Vn b y / ? | V*-l=fTl,ft\gW=Oi. I t follows from (5.4) 
and from (I) that ft is single-valued and continuous and that fô = 1, 
f^Vn = ao. Therefore (M) follows by induction on n. 

(N) Any covering complex, K> of K is a CW-complex. 
Since K is locally connected, by the definition of a covering space, 

each of its components is both open and closed and is a covering com­
plex of a component of K. A locally connected complex is obviously a 
CW-complex if, and only if, each of its components is a CW-complex. 
Therefore (N) will follow when we have proved it in case K and K are 
connected. We assume that this is so and also, to begin with, that K 
is a regular covering complex of K. That is to say the group, Gt of 
covering transformations26 in K operates transitively on the set p~~lq, 
for any point q(E.K, where p:K—*K is the covering map. We shall 
describe an open set, U<ZK, as an elementary neighborhood if, and 
only if, each component of p " 1 U is mapped by p topologically onto 
U. We shall describe an elementary neighborhood in K as a basic 
neighborhood if, and only if, its closure is contained in an elementary 
neighborhood. We shall describe a subset of K as a basic neighbor­
hood if and only if it is a component of p~lU, where U is a basic 
neighborhood in K. If ÜQK is a basic neighborhood the com­
ponent of p~~l(ptJ) are the sets TÜ for every TÇ:G. I t follows from 
the definition of K and the normality of K that the basic neigh­
borhoods constitute a basis for the open sets, both in K and in K. 

Let UCZK be a basic neighborhood and let V be an elementary 
neighborhood such that UCV. Then the components of p _ 1 F a r e 
disjoint open sets in K, each of which contains exactly one com­
ponent of p""1!/. Let QCp"lU be a set of points, of which at most 

25 I.e., the group of homeomorphisms, T:K-*K, such that pT=*p. 
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one lies in each component of p~lU. Then Q is a closed discrete set. 
For if Q has a limit point, q, then pqÇîTJC. V, whence q lies in one of 
the components, V, of p~lV. But this is absurd, since V contains at 
most one point of Q. Therefore Q is closed and discrete. 

Let ÜQK be a basic neighborhood, let U* be its closure26 and let 
CCZ.K be compact. I say that only a finite number of the sets TC meet 
U*, where T<EG. For if TC meets U* then C meets T~lU*. Let 
qrGCnT-iU*. Since TfU*C\T"U* = Q if T V T " it follows from 
the preceding paragraph that the aggregate of points qr, for every T 
such that C7*P\rC^0, is a discrete, closed subset of C. Since C is 
compact the set {qr} is finite, which proves our assertion. 

We now prove that K has the weak topology. Let XCZ.K be a sub­
set such that XC\e* is closed, for every cell e^K. In order to prove 
that J? is closed it is enough to prove that I H U* is closed, where U* 
is the closure of an arbitrary basic neighborhood ÜQK. For this 
implies that Ü — X = Ü — (XC\ U*) is open, whence it follows that 
K — X is open. Therefore, to simplify the notation, we assume that 
XQU*, where Ü is a basic neighborhood in K. Let X=pX and let 
g be a given cell in K. Then27 

xr\e = p{xr\p-iè). 
Let ^ G ^ be a cell which covers e. Then p - 1 ^ consists of the sets Te* 
for every T G ^ , and 7>* is the closure of the cell TeÇ^K. Since e* is 
compact it follows from the preceding paragraph that only a finite 
number of the sets Te*} say Z\e*, • • • , Tke*} meet £/*. Let Pi = X 
r\T{e* (t = l, • • - , * ) . Then 

x n ê = p(j? n p-1*) = p(Pi u • • • u p*). 
But Pi is closed, by the hypothesis concerning X, and hence compact, 
since Tie* is compact. Therefore, P±U • • • \JPk and hence X H ê are 
compact. Since the cell eÇïK is arbitrary it follows that X is closed. 
Therefore p~lX is closed. Since U*r\TU* = 0\î 7 V 1 it follows that 

x = u* r\V TX = u*n p-xx. 
T 

Therefore X is closed and it follows that K has the weak topology. 
Since K° is discrete it follows that K°=p~~1K° is a discrete set of 

points. That is to say, K° has the weak topology. If n>0 then Kn is 
connected, according to (C), and Kn is obviously a covering complex 
of Kn. I t follows from (L) that the injection homomorphism, iri(Kn) 

26 We shall denote the closure of a set PCZK by P*. 
27 Uf:P~>Q is any map and AQP, BÇ.Q, then ƒ (A^f-W) = (j'A)C\B. 
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—>TI(K), is onto, whence Kn is connected. Obviously TKn = Kn for 
any TÇ.G and it follows that Kn is a regular covering complex of 
Kn. Therefore Kn has the weak topology, according to what we have 
just proved. It follows from (E) that K is a CW-complex. 

Now let Z b e a (connected) covering complex of i£, which is not 
regular. Then a universal covering complex, i^ of K is a universal 
covering complex of K. Therefore K is a CW-complex. Let p : K—>K 
be the covering map. Since p is an open map it follows that K has 
the identification topology determined by p . I t follows from the final 
paragraph in §4 that K is closure finite and that the remaining condi­
tion of (F) is satisfied. Therefore it follows from (F) that K is a 
CW-complex, which completes the proof of (N). 

6. Proof of Theorems 1-4. Let X, F be spaces in the class a and 
le t / :X—»Fbe a map such that the induced homomorphism, /n:?rn(X) 
—>7rn(F), is an isomorphism onto if lSn<N+l, where N 
= max (AX, AY). Let P and Q be CW-complexes, of dimensionalities 
AX and À F, which dominate X and F respectively. Let X : X—>P, 
\ ' : P - » X and /A: Y-*Qy ix':Q->Y be maps such that X'X~1, JU'M— 1. 
Let Z be the mapping cylinder28 of ƒ and R the mapping cyclinder of 
the map /z/X':P—>(), assuming that no two of the spaces X, F, 
XXI, etc., have a point in common. 

Assume that there is a homotopy, ht:(Z, X)—»(Z, X) , such that 
Ao = l, hiZCX. Let hlZ—^X be given by hz = hiz (zÇ:Z) and let 
i:X—>Z be the identical map. Then ih = hi:Z-+Z, whence iho^l. 
Also hicml, since fe*:X--»X, given by fe*x = fe*x ( x £ X ) , is a deformation 
of &o = 1 into kx = hi. Therefore i is a homotopy equivalence. As in [ô] 
it follows that f:X—>F is a homotopy equivalence. 

We now prove the existence of the homotopy &*:(Z, X)—»(Z, X). 
The argument in [6], which refers to the homotopy sequence 

( 6 . 1) 7Tn(X) - > Tn(Z) - > TW(Z, X ) - * 7Tw-l(X) ~> T*-i(Z), 

shows that TTW(Z, X ) = 0 if l g » < i V + l . Since dim Q^N it follows 
from (K), in §5 above, that there is a homotopy, ptlQ—^Z, such that 
P O ^ M ' I P I Q C X , where j is the identical map j : F—>Z. Therefore 
jc^jn'fiC^pxiJL. Since pi/zFCpi(?CX, the argument used in [6] shows 
that WN+I(Z, X) = 0, in case N< <*>. 

Let K=(PXI)VQ and let i2 be formed from the CW-complex K 
by identifying28 (£, 0) with p and (£, 1) with M A ' £ £ < 2 for each 
point pGP. Let <j>\K-*R be given by <£(£, 0 ) = £ , 0(£, l)=y,f\'p, 
4>(P> t) = (ƒ>, 0 if 0 < / < l , 0 | 0 = 1. The arguments in [6, §2] show that 

28 See §7 below. 
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there are maps 

v: (Z, X) -* (R, P), /:(jR, P) -> (Z, X), 

with p'lö—iM'» and a homotopy, f<:(Z, X)—>(Z, X) , such that 
fo = ?V, f i - 1 . Let L = ( P X O ) V J ( P X l ) U ö C i ^ , let pt:Q->Z mean 
the same as before and let p't\L—*Z be given by 

p/ (* ,0) = / 0 ( A 0), 

p/(f, 1) = p,«<>, 1), 

plq^ Pt<t>q (peP,q G O ) . 

Thenpo =^ /0|L,sincepo=iM' = ^ , | (?,andpi LC.X. Let\[/o==v'<l):K^Z. 
Then it follows from (J) that pi has an extension \l/t:K—*Z. Since 
faL^plLCX and since dim i £ ^ N + l and TTW(Z, X ) = 0 if l^n 
<N+2 it follows from (K) that there is a homotopy, \[/l .K—»Z, 
rel. L, such that ^0' =^ i , yplKCX. Let dt:K->Z be the resultant of 
^* followed by \f/l. Then it is easily verified that xt — 6t<t>~l''*R.-*Z is 
single-valued, and hence continuous [7, §5]. Moreover Xo=^o<t>"1 

= pf(j)(j)-1 = pf and xiR—^i^RCX. Therefore the required homo­
topy, ht:(Z, X)—>(Z, X) , may be defined as the resultant of fi_* fol­
lowed by Xtv- This proves Theorem 1. 

The proofs of Theorems 2, 3, 4 are the same as those of the cor­
responding theorems in [ó]. 

7. Note on w-homotopy. Let us return to Fox's original definition 
of w-homotopy, in terms of finite polyhedra. It is not certain, for 
reasons indicated in [ó], that an ^-homotopy equivalence, ƒ :X—>F, 
induces an isomorphism of irr(X) onto Tr(Y) (r^n), where X, Y are 
arbitrary, arcwise connected spaces. This question reduces to the 
following. Let hr'Trr(X)—>rr(X) be the endomorphism induced by a 
map, h:X—>X, such that &~ n l . Is hr an automorphism if l^r^n? 
Consider the case r = l. It is easily proved that, given any finite set 
of elements, #i, • • • , ûtoOiCX'), there is an element, rj (EZTTI(X) , 
such that hiai^rjairj"1 (i = l, • • • , k). I t follows that hi is an iso­
morphism into. Also it is an inner automorphism if TX(X) has a finite 
set of generators. Is hi an automorphism if wi(X) is arbitrary? 

Meanwhile we show that these questions can be answered with 
our definition. Let X be an arbitrary arcwise connected space and let 
a point XQÇ.X be chosen as base point for all the groups irr{X). We 
construct a CW-complex, K = K(X, x0)> which is somewhat anal­
ogous to the singular complex of homology theory. Let K° consist of 
a single 0-cell e\ With each map, 0: ((7r, d<rr)-*(X, x0) (r = 1, 2, • • • ), 
we associate a cell, er

eÇ:K, such that der
d = e°. The points of er

e are the 



1949] COMBINATORIAL HOMOTOPY 235 

pairs (p, 0), for each point pÇz<rr—d<Tr, and gl<rr—>ër
d, given by 

gp — (P> 0)(p£.crr—d<rr), gdar = e0, is a characteristic map for er
e. The 

complex thus defined is obviously closure finite and we give it the 
weak topology. 

Let ƒ, ƒ ' : X-+ Y be maps of X in any arcwise connected space F, 
and le t / r , ƒ/ :irr{X)—>wr(Y) be the homomorphisms induced by ƒ, ƒ', 
when the base-point yo&Y is joined to fx0, fxo by paths (see [12] 
and [1, p. 279]) X, A' : ( I , 0)-+(F, ^ 0 ) . If r / G ^ F ) , &G7rr(F, :y0)(rë;l) 
we shall use rjb to denote the image of b in the automorphism of 
TIV(F, y0), which is determined by rj. Thus rj-b^rfbr]^1 if r = 1. Using 
our definition of w-homotopy we have: 

THEOREM 11. If f~nf' there is a fixed element, 77 £71*1 (F) , such that 
fja = rj'frafor every aÇ:irr{X) and every r = l , • • • , n. 

Let K = K(X, Xo) mean the same as before and let <I>:K—*X be 
given by <j>e° — xo, <l>(p, 0)=0p, for each point (p, d)ÇzK — e°. It fol­
lows from (A) in §5 that 0 is continuous. The homomorphism, 
0r:7rr(i£)—>TTr(X)f induced by <f> is obviously onto. Since f^*f' there 
is a homotopy, £*:i£n->F, such that £ o=/0| i£w , %i=f'4>\Kn. Let 
li:I-*Y be given'by / i ( / ) = ^ ° . Then M ( 0 ) = X ( 1 ) , / i ( l )=X ' ( l ) . Let 
yCzTTi(Y) be the element represented by the circuit, which consists 
of X', followed by JU_1, given by /i_1(/) =/x(l—/), followed by X"1. 
Then it is easily verified t h a t / / 0 r a = r ; / r 0 r a , where aÇ:Trr{K) and 
l^rSn. Since <j>r is onto this proves the theorem. 

8. A process of identification. We shall prove a theorem, which is 
analogous to Theorem 2 in [7]. For this we shall need a lemma con­
cerning a process of identification, which is often used (e.g., in con­
structing mapping cylinders, attaching cells k to complexes, etc.) but 
which, as far as I know, has never been described in full generality 
and detail. 

Let X and F0 be given topological spaces and let fo : Xo—* F0 be a 
map of a closed subset, X0(ZX, into F0. We allow X and F0 to have 
common points, but only if XC\ YoQXo, XC\ Fo being a closed subset, 
both of Xo and of Fo, and / o | X 0 n F o = l. Let F be the space which 
consists of the points in X — Xo and in F0, with the identification 
topology determined by the map29 0 : X U F o - + F , w h e r e 0 | X - X o = l, 
<t>\ F o ^ l , <l>\Xo=fo. Notice that a set B0C.Y0 is closed in F if, and 

29 XKJ Yo denotes the space, which consists of the points in X and in Fo and in 
which a subset, A, is closed if, and only if, AC\X and A(~\ F0 are closed subsets of the 
spaces X and Fo. Since XC\ Y0 is closed in both X and Fo it follows that X and F0 

keep their own topologies in X U FQ. 
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only if, Y0r\<l>-lBo (=B0) and Xr\(t>-1B0(=fö1Bo) are both closed in 
Z U Fo. Since Xo is closed it follows from the continuity of ƒ o that 
fo~1Bo is closed in X if Bo is closed in Fo. Therefore Fo keeps its own 
topology and is a closed subset of F. Similarly X — XQ keeps its own 
topology. We shall say that F i s formed by attaching X, or X —Xo to 
Fo by means of the map /0 . We shall also say that F is formed by 
identifying each point # £ X o with/ox £ F0. 

In some cases we may be given the spaces X, F and a map, 
/ : ( X , Xo)—^(F, Fo), where X 0 C X and F 0 C F are closed subsets, 
subject to the conditions: 

(8.1) (a) f\ X — Xo is a homeomorphism onto Y— F0 ; 
(b) a subset BC.Y is closed (open) if, and only if, BC\Yo is closed 

(relatively open) and if f~lB is closed (open). 
In this case we may always regard F a s formed by attaching a homeo-
morph of X to F0. For let ho'Xo—^Xo be a homeomorphism of X0 

onto a new space, X0 ' , which does not meet F. Let X' be the space 
consisting of the points in X0' and in Y—Yo with the topology 
which makes h\(X, X0)—>(X', X0 ') a homeomorphism, where h\X0 

= h0, h\X — X o = / | X — X0. The conditions (8.1) are satisfied by X ' , 
F a n d the map fhr1: (X', X£)->(Y, F0). Since X'-Xi = F - F0 and 

fh~x\ X'-Xi = 1 it follows that F is the result of attaching X' to F0 

by means of the map fh~l\Xo . 
A particularly important application of this construction is that 

of the mapping cylinder of a map, g'.A —»5, where A, B are disjoint 
spaces. After replacing AXI by a homeomorph, if necessary, we 
assume that it has no point in common with A or B. Then the map­
ping cylinder is defined as above, with Yo=A\JB, X = AXl, 
Xo = (AXO)yj(AXl) and / 0 (a , 0 ) = a , f0(a, l)=ga. 

Let X, F and ƒ : (X, X 0 ) -» (F , F0) satisfy (8.1) and let X - X 0 

= F— Fo, f\ X — Xo 3 5 1 . Let X be a normal, Hausdorff space and let 
Fo satisfy the following "weak regularity" condition: distinct points 
yu y2<Z Fo have neighborhoods Vi, V2Q F0 such that Vir\V2 = 0. 

LEMMA 1. Under these conditions Y is a Hausdorff space. 

Let yi, y2 be distinct points in F. First assume that at least one of 
them, say yu is in F— F0 = X —X0. Since F0 and X are Hausdorff 
spaces, the sets y\, y2 and f~~ly2 are closed. Since X is normal there is 
therefore a neighborhood, UC.X, of yu such that 

ÏÏCX - ( X o U / - 1 ^ ) . 

Then/Z7 = Z 7 C F - F o and yi&UJLy2GY-U. Also U is open and U 
closed in F. Therefore U, Y—U are disjoint, open subsets of F, 
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which contain yit y2 respectively. 
Let yi, ^ C F o and let F?, F £ C F 0 be neighborhoods of yu yi 

such tha£_F?QF? = 0. Let Ui^VfCXo (i = l, 2). Then Z^C/" 1 ?? , 
whence £7?P\ Z7° = 0. Since X is normal there are disjoint open sets, 
Ui, Ui CX, such that F ? C Ui. Let 

Ui = ÜÏ - (Xo - u\). 

Then [/»• is open, since X0 — J/J* is closed, and U\C\ U2 = 0, UiC\Xo = £/?. 
Let 

F, = (^ - u\) u y' c F. 

Since £/* — C/^C F— F0 it follows that F 0 H F»= F°, which is open in 
Fo. Also 

fXVi = / V ; - U°) \JfVi = ( ^ - U°d \JU\= Ui. 

Therefore F» is open in F. Also 3>i£F» and, obviously, F inF 2 ==0. 
This completes the proof. 

Now let X and F0 be disjoint CW-complexes and let X0 be a sub-
complex of X. Since X, F0 are normal, Hausdorfï spaces it follows 
from Lemma 1 that F is a Hausdorff space. Let g:an—^ën be a char­
acteristic map for a given cell enÇ:X — X0. Then fg\crn — da71 is a 
homeomorphism onto fen, where f:X—>Y means the same as before. 
It follows that Fis a complex, consisting of the cells in F0 and the cells 
f e (eEX-Xo), provided30 ƒ (X0r\den) C F0

W_1 for each n-cell enGX-X0 

(n = 0, 1, • • • ). This being so, I say that F i s closure finite. For any 
cell e £ F o is contained in the finite subcomplex Yo(e). Let e be a 
given cell in X — Xo, let K = X(e) and let X0 = ^ n i 0 . Then K0, and 
hence fK0, is compact, and it follows from (D) in §5 that Lo = Yo(fKo) 
is finite. The subset L^UfK is compact and is the union of the cells 
in Lo and 'm f (K —Ko). I t is therefore a subcomplex. Moreover it is 
finite and contains je. Therefore F is closure finite. Also F has the 
identification topology, which is determined by the map <f> : XKJ Fo—» F, 
where <j>\X=j, </>\ F0 = l. Obviously X\JY0 is a CW-complex, con­
sisting of the cells in X and in F0, and the cells in F are the cells <j>e 
for each cell e £ ( X — X 0 )WF 0 . Since F is closure finite it follows 
from this and from (D) in §5 that Y{<t>e) is finite for any e £ X U F 0 . 
Therefore F is a CW-complex, according to (F) in §5. Under these 
conditions31 we say that Y—Yo is isomorphic to X — X0 and that 
f\ X — Xo is an isomorphism of X—Xo onto F— Fo. 

3° E.g., if /0:Xo->Fo is cellular or if X^CXoJXoC K'\ 
31 In this definition we allow Xo and F0 to be empty. 

file:///JfVi
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We mention two applications of the preceding paragraph. The first 
is that the mapping cylinder of a cellular map, f:K—>L, where K, L 
are CW-complexes, is itself a CW-complex. Secondly, let X be the 
union of a set of w-elements, {E"}, which are disjoint from each other 
and from F0, each E" being a subcomplex, £?==g?U^""1Ue?. Let 
Xo be the union of the boundaries, dE" = eçl\Jeï'~l, and l e t / 0 be any 
map of the form f0:X0—»FJ_1. Then we say that F is formed by 
attaching the set of cells {e"} to F0 by means of the maps f<\dE". 

Let X, F and / : ( X , X0)-->(F, F0) satisfy (8.1), where X, F a r e 
CW-complexes, Xo, Fo are subcomplexes and the map ƒ is cellular. 
Let /0:X0—»F0 be the map given by foX=fx (xEX 0 ) . Then we have: 

THEOREM 12. J//0 :X0—»F0 is a homotopy equivalence, so isf:X-*Y. 

The proof is the same32 as that of Theorem 2 in [7]. 
If Fo is a single point we describe the above process of identifica­

tion as shrinking X0 into the point F0. I t follows from Theorems 1 
and 12 that a simply connected, aspherical subcomplex, X 0 C X , may 
be shrunk into a point without altering the homotopy type of X. 

Let Xo = Xn and let F 0 = F0*. Then F"= FJ? and we have: 

COROLLARY 1. Given a CW-complex, F Q = X W , there is a CW-com­
plex, F, such that F w = YQ, X= Y and F— Fw is isomorphic to X — Xn. 

Let X and F0 be connected, let F 0 = FJ and let Y^n-XXn ( » ^ 2 ) . 
Then 

where 2?, 2" mean the same as in Theorem 6. Let us "fill up" the 
closure, Sn, of each cell e w £2? with an (w + l)-cell, en+l, in such a way 
that ên+1 is an (w + l)-element bounded by Sn. The result is a CW-
complex,33 K~X\J12[\J\en+l}. There is obviously a retracting de­
formation of K into X in which each (w + l)-element, en+1, is retracted 
into the point XC\en+\ Therefore K=X. Also i£w = X»U2?, .K»-1 

«X*- 1 . Let L W =F2U22. Then L n - 1 = F J - 1 . Therefore, replacing 
X, Xw, FJ in Corollary 1 by K, Kn, Ln, we have: 

COROLLARY 2. /ƒ Fo = w-iXw //^re is a CW-complex, Y, such that 
X^Y and Yn-^Y^\ 

For example, if 7r r(X)=0 for r = l, • • • , » — 1, we may take F 
32 Notice that CW-complexes and subcomplexes have all the homotopy extension 

properties required by [lO]. 
33 We assume that the cells in 2" and the new (w+1)-cells, {en+1}, are disjoint 

from each other and from X, 
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to be a single point, as observed in §3. Then X^ F, where Fn~1== F£ 
and Fw consists of the ^-spheres, which are the closures of the w-cells 
in2£. 

9. Countable complexes. We describe a complex as countable if, 
and only if, the number of its cells is countable. By a locally finite 
(finite) polyhedron we mean a space which is covered by a locally 
finite (finite) simplicial complex. The purpose of this section is to 
prove : 

THEOREM 13. Any countable {finite), p-dirnensional CW-complex 
(p == °° ) is of the same homotopy type as a locally finite (finite), p-
dimensional polyhedron. 

We shall need three lemmas for the proof of this. A CW-complex, 
K', will be described as a subdivision of a CW-complex K if, and 
only if, both complexes cover the same space and if each cell of K' 
is contained in a cell of K. If K' is a simplicial complex we shall de­
scribe it as a simplicial subdivision of K. Let K' be a simplicial sub­
division of K and let a set of disjoint w-cells, {e?}, be attached to K by 
maps, gi'.dEÏ—ïK71-1 ( X n £ J = 0), each of which is simplicial with re­
spect to K' and some triangulation of 3EJ\ Then we have: 

LEMMA 2. The complex K\J{eï} has a simplicial subdivision, of 
which K' is a subcomplex. 

This will be proved in §10 below. 
Let if and {eï) mean the same as in Lemma 2, except that K need 

not have a simplicial subdivision. Let f:K—>L be a homotopy 
equivalence of K into a CW-complex L. Let 

hiCzfg4:dEÏ-+L, 

where hidE^C.Ln~1 but ~ indicates homotopy in L. Let the cells 
{e?} be attached to L by the maps hi, thus forming a complex 
LU{e?}(Lr \E? = 0). 

LEMMA 3. The mapfiK-^L can be extended to a homotopy equivalence 
h:K\J{eï}->L\J{eï}. 

If hi=fgi this follows from Theorem 12, taking h\ e"~ 1. In general 
it follows from Theorem 12 and the proof of Lemma S in [5]. 

Let a connected, CW-complex, K, be the union of an "expanding" 
set of subcomplexes, K0C.K1Q • • • , such that if n>0 then Kn is 
connected and the injection homomorphism 

in*TTn(Kn+l) ~~* ^n(K) 
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is an isomorphism onto (e.g., Kn = Kn). Let L and L0CX1C • • * C.L 
satisfy the same conditions and let {K n}, {Ln} be related by a se­
quence of homotopy equivalences, 

fn:(Kn, Xn-i) —» (Ln, Ln-i), 

such that /" iKn-i**/"- 1 . 

LEMMA 4. The map, fiK—^L, which is given by / | l£n=*/n
f is a 

homotopy equivalence. 

Let in mean the same in L as in K and let 

fnl7Tn(K) ~ » Tn(L), fn :TTn(Kn+i) —» 7rn(£n+l) 

be the homomorphisms induced by ƒ, / n + 1 . Then/£+ 1 is an isomorphism 
onto since / n + 1 is a homotopy equivalence. Also 

in • fl"n ( ÜTW+1) —> 7Tn ( ÜT), tn I Wn (Ln+1) —> 7Tn ( Z ) 

are isomorphisms onto and obviously fnin^infn^1- Therefore fn is 
an isomorphism onto, for each » = 1, 2, • • • , and the lemma follows 
from Theorem 1. 

We are now ready to prove Theorem 13. This will obviously follow 
when we have proved it for a countable CW-complex, K, which is 
connected if p = dim K>0. We first assume K to be finite and use 
induction on the number of cells in K, starting with the trivial case 
K = K°. Let p>0 and let K0 = K — ep, where ep is any p-cell in K. 
Assume that there is a finite complex, Lo, with a simplicial sub­
division Li, which is related to K0 by a homotopy equivalence 
folKo-^Lo. Let ep be attached to K0 by a map g:dEp—^K0f where 
e*> = Ep-dEp. Assuming that L0r\Ep = 0 let ep be attached to L 0 by 
a map 

hoc^fog:dEp—>L0, 

which is simplicial with respect to Li and some triangulation of dEp. 
The result is a complex, L, which has a simplicial subdivision, accord­
ing to Lemma 2. The theorem, for K finite, now follows from the 
induction and Lemma 3. 

Now let K be infinite. In order to repeat the above construction an 
infinite number of times we shall, so to speak, "spread Lo out" so 
that L may be locally finite. Assume that there is a sequence of 
locally finite complexes, L o C L i C • * * » such that Ln is connected if 
n>0, and a sequence of subcomplexes, P n CL w , such tha t : 

(9.1) (a) jLn-i — i V - i = Un-i is open in Ln and Ln-i(ZUP (L_i = P_i 
= 0), 



1949] COMBINATORIAL HOMOTOPY 241 

(b) Pw is a deformation retract of Lnt 

(c) if n>m>\ the injection homomorphism 7rm_i(Lm)—»7rm-_i(Zn) is 
an isomorphism onto, 

(d) there is a sequence of homotopy equivalences, fn: (Kn, K11"1) 
->(L», Ln-i), such thaitfn\Kn-1=fn-\ 

(e) Ln has a simplicial subdivision, Z,n', of which L ^ x is a sub-
complex. 

(f) dim Lw = dim Kn^n. 
Then we define the topological space 

I = U l n (# = dimK ^ 00), 

in which a subset XÇ_L is closed (open) if, and only if, XC\Ln is a 
closed (relatively open) subset of Lw, for each n^Q. Clearly Ln keeps 
its own topology in L and since each Ln is a locally finite complex it 
follows that L is a CW-complex, which consists of the cells in 
Lo, Li, • • • . I say that L is locally finite. For [ / n _ iCI n - iC t /« and 
C/n-i is open in Ln and hence in [7n. Therefore, given w^O, it follows 
by induction on n that t/m is open in Un and hence in Ln for every 
n>m. Therefore Um is open in L. Since Ln-.iCUn it follows that any 
point g£I< is in Un for some w. Let qÇzUn and let QQLn be a finite 
subcomplex, of which q is an inner point, according to the topology 
of Ln. Since Un is open in L it follows that q is an inner point of Ç, 
according to the topology of L. Therefore L is locally finite. 

Since L is locally finite it follows from (D), in §5 above, that any 
compact subset is contained in a finite subcomplex of L. It is there­
fore contained in Lw, for some n^Q, and it follows without difficulty 
from (9.1c) that the injection homomorphism Tm_i(Lm)-*7rm_i(L) 
(m>l) is an isomorphism onto. Therefore it follows from (9.Id) and 
Lemma 4 that K=L. Clearly 

V = U Li 
n 

is a (locally finite) simplicial subdivision of L. Finally dim L 
= £ = dim K and the theorem follows. 

Now assume that Lny Pn have been constructed for n = 1, • • • , r ^ O 
so as to satisfy (9.1) with n^r. If Kr+1 = Kr we define L r + 1 = L r, 
P r + i = P r . Let Kr+l7^Kr and let Xa be the complex covering the half 
line (a, 00), which has 0-cells at the points a+i (i = 0, 1, • • • ). 
Assuming that the topological product PrXX0 has no point in com­
mon with L r , we identify each point x £ P r with (#, 0 ) G P r X 0 so as 
to form a locally finite complex 

Mr = Lr U (P r X Xo). 
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This has the simplicial subdivision L/U(PrX-XTo)', where (PrXXo)' 
is formed by starring the prisms aX(i, i+1) (i = 0, 1, • • • ), for each 
simplex, <r, in the subcomplex of Li which covers P r . Clearly Lr is 
a deformation retract of Mri whence gr:Kr—>Mr, given by grx=frx 
(xÇzKr), is a homotopy equivalence. It obviously follows from (9.1b) 
that PrXXo is a deformation retract of Mr and hence that PrXk 
is a deformation retract of Mr, for each £ = 1,2, • • • . Therefore any 
map dEr+l—^Mr is homotopic to a map in PrXk. We now repeat the 
construction used in the finite case, attaching an (r + l)-cell, ej4"1, to 
Mr by a suitable map dEl+1->PrXk (ife>0), where «;+\ 4 + \ • • • are 
the (r + l)-cells in K. The result is a locally finite complex, Lr+i, 
which satisfies (9.1d, e, f) with wrg r+1 . We define 

Pr+i = ( P r X l i ) U {/,+1}. 

Clearly PrXXi is a deformation retract of P r X X 0 , and hence of 
Mr. Therefore Pr+i is a deformation retract of £ r+i. Therefore (9.1b), 
and obviously (9.1a), is satisfied with n^r + 1. SinceL r is a deforma­
tion retract of Mr and L r + i is formed by attaching (r + l)-cells to Mr 

it follows that (9.1c), and hence all the conditions (9.1), is satisfied 
with wgf + 1. Starting with LQ — PO — K0 the theorem now follows 
by induction on r. 

10. Proof of Lemma 2. An w-element, En
% in an w-sphere, Sn, will 

be called a hemisphere if, and only if, the closure of Sn — En is also an 
w-element. Let f:<rn—>crk be a barycentric map of an ^-simplex, <rw, 
onto a ^-simplex ak (k^n). Assuming that <rh does not meet <rn let V 
be the mapping cylinder of ƒ. We shall prove : 

LEMMA 5. T is an (n+1)-element and <rn is a hemisphere in dT. 

Before proving this we deduce a corollary and show that it implies 
Lemma 2. Let a\ be a face of an (w + l)-simplex, crn+1. Let f\:</{—><rk 

be a barycentric map of a\ onto <rk and, assuming that <rk does not 
meet o"?+1, let En+1 be the space formed by identifying each point 
pÇzVi with fxp. Obviously En+1 is homeomorphic to Oo+1Ur, where T 
means the same as in Lemma S and O'S"1"1 is an (w + l)-simplex, of 
which an = or2+1P\r is a face. Since <rn is a hemisphere both of dal+1 

and of ô r we obviously have the corollary: 

COROLLARY. En+1 is an (n+l)-element. 

Let an w-cell, en, be attached to a complex, K, by means of a map, 
dEn—>K, which is simplicial with respect to a simplicial subdivision, 
K', of K and some triangulation, 5, of d£w . Let £0 be an interior 
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point of En. When en is attached to K each simplex 0,r+1 = £o0'r, where 
ar is a simplex of S, is transformed into an (r + l)-element Er+1, ac­
cording to the above corollary. We triangulate K'yJen by starring all 
these (r + l)-elements, in order of increasing dimensionality. The re­
sult is a simplicial subdivision of KKJen, which contains K' as a sub-
complex. Lemma 2 follows from this construction, carried out in each 
of the cells £?. 

We now prove Lemma 5, using a method suggested by M. H. A. 
Newman. Let an be a rectilinear simplex in Euclidean space i?w. Let 
bo, • • • , bk be the vertices of ah and let <Ti be the face of <rn, whose 
vertices are those which are mapped by ƒ on b{. Let #< be the centroid 
of er», let al be the fe-simplex do • • • a& and let g:<rn—><ro be the bary-
centric map, which is determined by ga\=a». Then ga» = a», whence 
ggx = gx for each #£<rn, or g2=sg. Also cGcrJ, where c is the centroid of 
an, since a» is the centroid of <7<, and it follows from the definition of 
a barycentric map that gc~c. 

We treat Rn as a vector space, taking c to be the origin or null 
vector, which we also denote by 0. We shall use small Roman letters 
to denote vectors in Rn and small Greek letters, as in Xx+/ry, to de­
note (real) scalar multipliers. Let ox : <Tn—>an be the map which is given 
by 

(10.1) hx = (1 - X)* + \gx/2 (0 S X Û 1; * G O . 

I say that if X < 1 the map ox is nonsingular. For ox is a linear map, 
such that 0x0 = 0, and if it is singular, then 0\x == 0 for some nonzero 
vector xG<rn. Since g2 = g it follows from the linearity of g that 

(10.2) gdxx = (1 - X)gx + \gx/2 = (1 - \/2)gx. 

Therefore 0\X = O implies, first, gx=*0> and then (1— X)x = 0, or x = 0 
if X < 1, which proves the assertion. 

I say that, if 0 ^ X < / x g l , then d^a" is in the interior of 6\<rn. For 
0\x is the point which divides the segment joining x to gx/2 in the 
ratio X: (1 —X). When we have shown that the simplex 0IÖO is in the 
interior of 0Xorn(X<l) it will follow that the vertices of öM<rw(ju>X) lie 
on rectilinear segments, which join the vertices of 0\an to interior 
points of 0\<xn. Hence, and since n>\, they are interior points of 
0\trn. Since 0p is a linear map the assertion will follow. Thus we have 
to prove that 0icrj is inside 0x^w, or that any point ga/2 (a£<rn) is of 
the form 0x#, for some interior point x£crw. Let p = l/(2—X). Then 

Bxpga = (1 - \)pga + \pg2a/2 

= p(l - X/2)ga = ga/2. 
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But p < l since X < 1 . Therefore pga is an interior point of an and the 
assertion is proved. 

The set of values X£JT, such that a given point, #£<rn, does not 
lie in d\an, is obviously open. Therefore there is a maximum, </>(#), 
of the values of X such that xÇ~B\<rn. It follows without difficulty from 
the preceeding paragraph that 0 is a continuous, real-valued function 
of xy such that 

(a) 4>(x) > 0 if x G <rw ~ àan
y 

(10.3) (b) <j>{x) = 0 if * Gd<r", 

(c) x G 0xcrn tf> and only if, X ^ <£(#). 

We now imbed an in <rnXl, in such a way that x = (#, 0) if #Gö"n, 
and take <7fc to be the simplex ÖKTJ X1 and ƒ :o-n—><r* to be the map given 
by 

fx = (Oxx, 1) = (ga/2, 1). 

If x is fixed and X varies from 0 to 1 we may regard the locus of the 
point (0x#, X) as the linear segment in crnXl, which joins x^an to 
fxÇ:<jk. If 0\x = 0\y it follows from (10.2) that gx = gy and from (10.1) 
that x = y if X < 1. Therefore no two of these linear segments have an 
inner point in common and we may take T to be the union of the 
sets ö\ö"nXX for each X G ^ It follows from (10.3c) that T is the set 
of all points (x, X) such that O^X^^(x ) . 

Let yf/\an—^I be the real-valued function which is defined by 
yp{pv) = 1 — p for each vector v^dan and each pÇ.1. Then the subset 
of <rnXl, which consists of all points (x, X) such that O^X^^(x) , is 
the join, an+1, of <rn and the point (0, 1). A homeomorphism (onto), 
h:T—><rn+1, is defined by 

h(x> X) = {x, p(x)X}, 

where 0^Xg<£(x) and p(x)—\p{x)/(j>{x) if ^G<7n-3(Tn, p (x )=0 if 
x£:d<jn. Clearly han = an and an is a hemisphere of dan+1. Therefore 
Lemma 5 is established. 

Let K, L be simplicial complexes and let ƒ :K-+L be a simplicial 
map. Let C be the "combinatorial" mapping cylinder of/, defined as 
in [ l ] , and T the "topological" mapping cylinder defined as in §8 
above. Let a be any simplex in K and let CffCC, T^CT be the map­
ping cylinders of the map, cr-^/o-, which is determined b y / . It follows 
from Lemma 5 that T is a polyhedral complex, whose (closed) cells 
are the simplexes in K and in L and the elements Tat for each simplex, 
<r, in K. Since Tff is an element it may be starred from an internal 
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point. Since Ca is also a star an easy induction shows that C is com-
binatorially isomorphic to the triangulation of I \ which is obtained 
by starring the elements Tff in order of increasing dimensionality. 
Hence the conjecture in the footnote on p. 1235 of [3] is easily 
verified. 
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