COMPOSITION OF BINARY QUADRATIC FORMS ## GORDON PALL 1. Introduction. The composition of quadratic forms, as originated by Gauss, is based on bilinear transformations. Thus, if a quadratic form $f_1 = \sum a_{ij}x_ix_j$ is expressible as a product of two forms $f_2(y_1, \dots, y_n)$ and $f_3(\varepsilon_1, \dots, \varepsilon_n)$ by means of a bilinear substitution $x_\alpha = \sum a_{\alpha\beta\gamma}y_\beta z_\gamma$, and if the determinants of order n in the n-by- n^2 matrix $(a_{\alpha\beta\gamma})$ are relative prime, f_1 is called the compound, or product under composition, of f_2 and f_3 . There are few examples of composition except for quadratic forms, and there it is confined to certain classes of forms in two, four, and eight variables. Now there is evidence that quadratic forms not admitting composition have certain properties akin to those which are most easily established in the case of binaries by use of composition. This suggests that the use of bilinear transformations is too restrictive, and that other useful definitions of composition may be possible. Dirichlet² did in fact base a theory of composition of binary quadratic forms on the representation of numbers. However, bilinear transformations appear (loc. cit., p. 159, formula (5)) in his proof of the uniqueness of the product class. Again, Brandt³ gave a theory of composition for binaries, based on integral linear transformations of a Grundform into multiples of the binary quadratic forms of a given discriminant. The extension of this to n variables appears to be difficult. In this article we define a compound of binary quadratic forms in a manner basically related to that of Dirichlet; and prove the uniqueness of the product class without using bilinear transformations. We also show that the basic lemma (due to Gauss) can be extended to quadratic forms in n variables. All the usual consequences of composition of binary quadratic forms can be derived from our present approach, some of them more simply. But we shall not enter into these details here. ## 2. Gauss's lemma and its generalization. The basic lemma of Presented to the Society, December 31, 1947; received by the editors January 12, 1948. ¹ C. F. Gauss, Disquisitiones Arithmeticae, 1801, Articles 235-249 et. seq. ² G. L. Dirichlet, De formarum binarum secundi gradus compositione, Berlin, 1851. Reprinted in Journal für Mathematik vol. 47 (1854) pp. 155-160; Werke, II, 1897, pp. 105-114. French translation, Journal de Mathematik (2) vol. 4 (1859) pp. 389-398. Also, Dirichlet-Dedekind, Zahlentheorie, Supplement X, §§145-9, 1871, 1879, 1894. ³ H. Brandt, Journal für Mathematik vol. 150 (1919) pp. 1-46. Gauss gives a criterion for equivalence of binary quadratic forms. Let [a, b, c] denote the real form $ax^2 + bxy + cy^2$. If [a, b, c] is carried into [a', b', c'] by the unimodular transformation (1) $$x = \alpha x' + \beta y', \quad y = \gamma x' + \delta y', \quad \alpha \delta - \beta \gamma = 1,$$ then $c' = a\beta^2 + b\beta\delta + c\delta^2$, and (2) $$a' = a\alpha^2 + b\alpha\gamma + c\gamma^2$$, $b' = 2a\alpha\beta + b(\alpha\delta + \beta\gamma) + 2c\gamma\delta$. From (2) it is easily seen that indeed these expressions are equal, respectively, to δ and $-\beta$. Gauss's lemma is as follows: LEMMA 1. The real forms [a, b, c] and [a', b', c'] with $a' \neq 0$ are equivalent if and only if their discriminants are equal and there exist two integers α and γ satisfying (2_1) and (3). Indeed, if the expressions in (3) are denoted by δ and $-\beta$, then $\alpha\delta + \gamma(-\beta) = (a\alpha^2 + b\alpha\gamma + c\gamma^2)/a' = 1$, and $0 = a'(\beta\delta + \delta(-\beta)) = a\alpha\beta + 2^{-1}b(\alpha\delta + \beta\gamma) + c\gamma\delta - 2^{-1}b'$, in agreement with (2). Hence the transformation (1) replaces [a, b, c] by [a', b', c''], where $b'^2 - 4a'c'' = b'^2 - 4a'c'$, c'' = c'. To extend this criterion to n-ary quadratic forms, consider a symmetric, nonsingular matrix A of order n. Apply to A the unimodular transformation of matrix $T = (T_1 T_2)$, where T_1 has n-1 columns, and T_2 one column, and obtain (4) $$B = T'AT = \begin{bmatrix} B_1 & K' \\ K & B_2 \end{bmatrix},$$ where $B_1 = T'_1AT_1$, $K = T'_2AT_1$, $B_2 = T'_2AT_2$. Thus, if A and B are equivalent matrices, then the leading minor matrix B_1 of order n-1 of B is represented primitively by A, the representation being T_1 . Also, if $S' = T^{-1}$, $S = (S_1 S_2)$ can be partitioned similarly to T, with S_2 a single column. It should be noted that S_2 is uniquely determined by T_1 alone, since S_2 is the column of cofactors in T of its last column. Also, $$T_1'S_1 = I_1, \quad T_1'S_2 = 0, \quad T_2'S_1 = 0, \quad T_2'S_2 = 1,$$ where I_1 is the identity matrix of order n-1. Finally, notice that $$T'AT_1 = \begin{bmatrix} B_1 \\ K \end{bmatrix}$$, hence $AT_1 = S_1B_1 + S_2K$. Thus $(AT_1-S_2K)B_1^{-1}$ is an integral matrix. This is the analogue of condition (3) above. We are now ready to state and prove the generalization of Lemma 1: THEOREM 1. Let A and B denote symmetric nonsingular matrices of order n, of equal determinants. Partition B as follows, with B_1 of order n-1 and B_2 a number: $$(5) B = \begin{bmatrix} B_1 & K' \\ K & B_2 \end{bmatrix}.$$ Let T_1 (with n rows, n-1 columns) be an integral matrix such that $B_1 = T_1' A T_1$. Denote by S_2 the column vector of cofactors consisting of the minor determinants of order n-1 of T_1 taken with appropriate signs. Assume that $(A T_1 - S_2 K) B_1^{-1}$ is an integral matrix. Then A and B are equivalent, and it is possible to construct T_2 so that $(T_1 T_2)$ is a unimodular transformation of A into B. PROOF. Set $(AT_1 - S_2K)B_1^{-1} = S_1$. It is not clear whether $(S_1 S_2)$ is then unimodular. However, the equation $AT_1 = S_1B_1 + S_2K$ yields $T_1'AT_1 = T_1'S_1B_1 + T_1'S_2K$, $B_1 = T_1'S_1B_1$, and since B_1 is assumed to be nonsingular, $T_1' S_1 = I_1$. This implies that T_1 is primitive, that is, the minor determinants of order n-1 of T_1 are relatively prime. Hence, the most general integral matrix R_1 (with n rows and n-1 columns) satisfying $T_1' R_1 = I_1$ is given by $R_1 = S_1 + S_2 H$, where H is an arbitrary integral matrix of one row and n-1 columns. Indeed, if $R_1 - S_1 = X$, then each column x_i of X is a solution of $T_1'x_i = 0$; since T_1 is primitive, this solution is $x_i = S_2 h_i$ where h_i is an integer. Since T_1 is primitive, there exists a column T_2 such that $(T_1 T_2)$ is unimodular, and $(T_1 T_2)^{-1}$ $=(R_1 S_2)'$, where R_1 is thus a solution of $T_1'R_1=I_1$. Hence $R_1=S_1$ $+S_2H$, for some integral H, and $(S_1 S_2)' = (T_1 T_1 H' + T_2)$. Accordingly, we can rename $T_1H'+T_2$ as T_2 , and have $(S_1, S_2)'=(T_1, T_2)^{-1}$. Then $T_2'AT_1 = T_2'(S_2K + S_1B_1) = K$. The value of B_2 is fixed by the equality of the determinants of A and B. The theorem follows. This theorem opens the way to a possible extension of the methods of this article to n variables. 3. Preliminary lemmas. As a first application of Lemma 1, we have the following lemma. LEMMA 2. Let a_1, a_2, b_1, c_2 be integers, $aa_2 \neq 0$. Then $[a_1, b_1, aa_2c] \sim [a_2, b_1, aa_1c]$ implies that $[aa_1, b_1, a_2c] \sim [aa_2, b_1, a_1c]$. If $(a_1, b_1, c_2) = 1$, then the equivalence of the latter two forms implies that of the former. PROOF. By Lemma 1, the equivalence of the first two forms is tantamount to the existence of integers α and ν satisfying (6) $$a_2 = a_1\alpha^2 + b\alpha\nu + aa_2c\nu^2$$, $a_1\alpha + b\nu \equiv 0$, $aa_2c \equiv 0 \pmod{a_2}$; and the equivalence of the last two forms amounts to (7) $$aa_2 = aa_1\alpha^2 + b\alpha\gamma + a_2c\gamma^2$$, $aa_1\alpha + b\gamma \equiv 0$, $a_2c\gamma \equiv 0 \pmod{aa_2}$, with some integers α , γ . If (6) holds, defining $\gamma = a\nu$ yields (7). If (7) holds, then $a \mid b\gamma$ and $a \mid c\gamma$, and hence if (a, b, c) = 1, $a \mid \gamma$, and $\nu = \gamma/a$ is an integer. The importance of this lemma may be seen from LEMMA 3. For any primitive binary quadratic forms ϕ_1, \dots, ϕ_q of the same discriminant d, there can be found integers b, s, a_1, \dots, a_q such that (8) $$\phi_i \sim [a_i, b, sa_1 \cdots a_q/a_i] \qquad (i = 1, \cdots, q).$$ Furthermore, these integers can be chosen so that a_1, \dots, a_q , and 2d are coprime in pairs. PROOF. A primitive form represents primitively integers prime to any assigned integer, and any integer primitively represented can be taken to be the first coefficient of an equivalent form. Choose for a_1 any integer primitively represented by ϕ_1 and prime to 2d; for a_2 any integer primitively represented by ϕ_2 and prime to $2a_1d$; \cdots ; and, finally, for a_q any integer primitively represented by ϕ_q and prime to $2a_1 \cdots a_{q-1}d$. Then the ϕ_i are equivalent to respective forms $[a_i, b_i, c_i]$ $(i=1, \cdots, q)$. By the Chinese Remainder Theorem, an integer b can be chosen to satisfy (9) $$b \equiv b_i \pmod{2a_i} \qquad (i = 1, \dots, q).$$ Then $\phi_i \sim [a_i, b, h_i]$, where $d = b^2 - 4a_ih_i$ $(i = 1, \dots, q)$, and hence since a_1, \dots, a_q , 2 are coprime in pairs, $d = b^2 - 4a_1 \dots a_q r$, with r an integer. 4. Composition of binary quadratic forms. By the preceding lemma, there can be constructed within any two primitive classes C_1 and C_2 , not necessarily distinct, of binary quadratic forms of the same discriminant, *united* forms of the type (10) $$\phi_1 = [a_1, b_1, a_2c_1] \text{ in } C_1, \quad \phi_2 = [a_2, b_1, a_1c_1] \text{ in } C_2.$$ This is easily seen to be true when the classes are not primitive, if merely their divisors are coprime. The divisors are integers, t_1 and t_2 , such that ϕ_1/t_1 and ϕ_2/t_2 are primitive forms. The *product*, or *compound*, of the forms ϕ_1 and ϕ_2 will be defined to be the form $[a_1a_2, b_1, c_1]$, and will be denoted by $\phi_1\phi_2$. The significance of this definition lies in the fact that, when t_1 and t_2 are coprime, it defines a unique product class. THEOREM 2. Let the divisors of the classes C_1 and C_2 of discriminant d be assumed coprime. Then, for all choices of united forms (10), the form $[a_1a_2, b_1, c_1]$ belongs to a unique class. PROOF. Consider, besides the forms ϕ_1 and ϕ_2 , a second pair, $\phi_3 = [a_3, b_2, a_4c_2]$ in C_1 , $\phi_4 = [a_4, b_2, a_3c_1]$ in C_2 . It is to be proved that $\phi_1\phi_2 = [a_1a_2, b_1, c_1] \sim [a_3a_4, b_2, c_2] = \phi_3\phi_4$. The difficulty in applying Lemma 2 immediately lies in the circumstance that a_1a_2 and a_3a_4 may not be coprime, and hence that it may not be possible to obtain equal middle coefficients by merely adding multiples of $2a_1a_2$ to b_1 and $2a_3a_4$ to b_2 . To circumvent this difficulty, we introduce intermediate forms, with coefficients prime to both. Thus, an integer a_5 can be chosen, which is primitively represented by C_1 , and such that a_5/t_1 is prime to $2a_1a_2a_3a_4$; and an integer a_6 , primitively represented by C_2 , such that a_6/t_2 is prime to $2a_1a_2a_3a_4a_5$. Construct $\phi_5 = [a_5, b_3, c_3]$ in C_1 , $\phi_6 = [a_6, b_4, c_4]$ in C_2 . Since $2a_1a_2$, a_5/t_1 , and a_6/t_2 are coprime in pairs, an integer b_5 can be found to satisfy (11) $b_5 \equiv b_1 \mod 2a_1a_2$, $b_5/t_1 \equiv b_3/t_1 \mod 2a_5/t_1$, $b_5/t_2 \equiv b_4/t_2 \mod 2a_6/t_2$. Then $d-b_5^2$ is divisible by each of $4a_1a_2$, a_5/t_1 , and a_6/t_2 , and hence $$d - b_5^2 = 4a_1a_2a_5a_6c_5/t$$, $t = t_1t_2$, with c_5 integral. Hence $\phi_1 \sim [a_1, b_5, a_2a_5a_6c_5/t] \sim [a_5, b_5, a_1a_2a_6c_5/t]$, $\phi_1\phi_2 \sim [a_1a_2, b_5, a_5a_6c_5/t]$. By Lemma 2, $\phi_1\phi_2 \sim [a_5a_2, b_5, a_1a_6c_5/t]$. Similarly, since $\phi_2 \sim \phi_6$, the last displayed form is equivalent to $[a_5a_6, b_5, a_1a_2c_5/t]$. We now choose an integer b_6 such that $$b_6/t \equiv b_2/t \mod 2a_3a_4/t$$, $b_6/t \equiv b_5/t \mod 2a_5a_6/t$. Then ϕ_3 , ϕ_4 , ϕ_5 , ϕ_6 , $\phi_3\phi_4$, and $\phi_5\phi_6$ are equivalent to new forms with a common middle coefficient b_6 , respective first coefficients a_3 , a_4 , a_5 , a_6 , a_3a_4 , a_5a_6 ; while the last coefficients are determined from $d=b_6^2$ $-4a_3a_4a_5a_6c_6/t$, with c_6 an integer. By Lemma 2, $\phi_3\sim\phi_5$, $\phi_3\phi_6\sim\phi_5\phi_6$; $\phi_4\sim\phi_6$, $\phi_3\phi_4\sim\phi_5\phi_6\sim\phi_5\phi_6\sim\phi_1\phi_2$. This completes the proof. **IILLINOIS INSTITUTE OF TECHNOLOGY**