
COMPOSITION OF BINARY QUADRATIC FORMS 

GORDON PALL 

1. Introduction. The composition of quadratic forms, as originated 
by Gauss,1 is based on bilinear transformations. Thus, if a quad­
ratic form fi =* ̂ ciijXiXj is expressible as a product of two forms 
h(yu • • • 9 yn) and/3(ri , • • • , zn) by means of a bilinear substitution 
x* ~ lLa<xpyypzyi a n ( i îf the determinants of order n in the n-by-n2 

matrix (aapy) are relative prime, f\ is called the compound, or product 
under composition, of ƒ2 and /3 . There are few examples of composi­
tion except for quadratic forms, and there it is confined to certain 
classes of forms in two, four, and eight variables. 

Now there is evidence that quadratic forms not admitting com­
position have certain properties akin to those which are most easily 
established in the case of binaries by use of composition. This suggests 
that the use of bilinear transformations is too restrictive, and that 
other useful definitions of composition may be possible. Dirichlet2 did 
in fact base a theory of composition of binary quadratic forms on the 
representation of numbers. However, bilinear transformations appear 
(loc. cit., p. 159, formula (5)) in his proof of the uniqueness of the 
product class. Again, Brandt3 gave a theory of composition for 
binaries, based on integral linear transformations of a Grundform 
into multiples of the binary quadratic forms of a given discriminant. 
The extension of this to n variables appears to be difficult. 

In this article we define a compound of binary quadratic forms in a 
manner basically related to that of Dirichlet; and prove the unique­
ness of the product class without using bilinear transformations. We 
also show that the basic lemma (due to Gauss) can be extended to 
quadratic forms in n variables. All the usual consequences of com­
position of binary quadratic forms can be derived from our present 
approach, some of them more simply. But we shall not enter into 
these details here. 

2. Gauss's lemma and its generalization. The basic lemma of 
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Gauss gives a criterion for equivalence of binary quadratic forms. 
Let [a, by c] denote the real form ax2+bxy+cy2. If [a, b, c] is carried 
into (V, &', c'\ by the unimodular transformation 

(1) x = ax' + Py', y = yx' + ôy', aô — fiy = 1, 

then c'==aj32+ij3S+c52, and 

(2) a' = aa2 + bay + C72, J' = 2aap + b(aô + py) + 2cyS. 

From (2) it is easily seen that 

{aa + 2-l(b + b')y}/a' and 

\2~~l{b — bf)a + cy\la! are integral; 

indeed these expressions are equal, respectively, to S and — /3. Gauss's 
lemma is as follows : 

LEMMA 1. The real forms [ay b, c] and [a', &', c'] with a'5*0 are 
equivalent if and only if their discriminants are equal and there exist two 
integers a and y satisfying (2i) and (3). 

Indeed, if the expressions in (3) are denoted by 5 and — j3, then 
ah+y(-P) = (aa2+bay+cy2)/a' = \y and 0=a'(j3S + S(-j3)) =aa/3 
+2^1b(aô+Py) +cyô — 2~lb\ in agreement with (2). Hence the trans­
formation (1) replaces [a, &, c] by [a', b\ c " ] , where &'2 — 4 a V 
= 6 ' 2 ~ 4 a V , <;"=<;'. 

To extend this criterion to w-ary quadratic forms, consider a sym­
metric, nonsingular matrix A of order w. Apply to A the unimodular 
transformation of matrix T = (7\ 7"2), where T\ has w — 1 columns, and 
r 2 one column, and obtain 

B = TfAT = \ 
(4) U BA 

where Bx = T ^ T i , £ = T'2ATh B2 = r2,47Y 

Thus, if A and 5 are equivalent matrices, then the leading minor 
matrix Bi of order n — 1 of B is represented primitively by A, the 
representation being TV Also, if S' ~T~l, S~{S\ S2) can be parti­
tioned similarly to T, with 52 a single column. It should be noted that 
52 is uniquely determined by T\ alone, since 52 is the column of co-
factors in T of its last column. Also, 

TÏSl = Ji, T1S2 = 0, r & = 0, T2S2 = 1, 

where Ji is the identity matrix of order w — 1 . Finally, notice that 
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T'ATx = f l \ hence AT% = 5iJ?i + S2K. 

Thus (AT\ — S2K)Bîl is an integral matrix. This is the analogue of 
condition (3) above. We are now ready to state and prove the gen­
eralization of Lemma 1 : 

THEOREM 1. Let A and B denote symmetric nonsingular matrices of 
order n, of equal determinants. Partition B as follows, with B\ of order 
n — 1 and B2 a number: 

(5) B - r* n 
U B2\ 

Let T\ {with n rows, n — 1 columns) be an integral matrix such that 
Bi = T{ A 7\. Denote by S2 the column vector of cofactors consisting of 
the minor determinants of order n — 1 of Ti taken with appropriate signs. 
Assume that (ATi — S2K)Bîl is an integral matrix. Then A and B are 
equivalent, and it is possible to construct T2 so that (T\ T2) is a uni-
modular transformation of A into B. 

PROOF. Set (ATi-S%K)Bïl**Si. I t is not clear whether (Si S2) is 
then unimodular. However, the equation ATi~SiBi+S2K yields 
T{ATx = T{SiBi+T{S2K, Bi~T{SiBu and since JBJ is assumed to 
be nonsingular, T( S\ = I\. This implies that 7\ is primitive, that is, the 
minor determinants of order n — 1 of T\ are relatively prime. Hence, 
the most general integral matrix R\ (with n rows and n — 1 columns) 
satisfying T{ R\ = I\ is given by R\ = Si+S2H, where H is an arbitrary 
integral matrix of one row and n — 1 columns. Indeed, if i?i — S i = X , 
then each column Xi of X is a solution of T{ # t = 0 ; since T\ is primitive, 
this solution is Xi~S2hi where hi is an integer. Since Ti is primitive, 
there exists a column T2 such that (T\ T2) is unimodular, and (Ti T%)~~1 

= (Ri S2)', where Ri is thus a solution of T{R\*=*I\. Hence i?i==5i 
+S2H, for some integral H} and (St S2)' « (7 \ TiH' + T2). Accordingly, 
we can rename TiH' + T2 as JT2, and have (Si S2)' ~(Ti T2)^. Then 
T{ ATi = Ti (S2K+SiBi) » K. The value of B2 is fixed by the equality 
of the determinants of A and B. The theorem follows. 

This theorem opens the way to a possible extension of the methods 
of this article to n variables. 

3. Preliminary lemmas. As a first application of Lemma 1, we 
have the following lemma. 

LEMMA 2. Let a, a\, a2, 6, c be integers, aa2?*0. Then [au b, aa2c] 
^[a 2 , b, aaic] implies that [aai, b, a2c]~[aa2, b, aie]. If (a, b, c) « 1 , 
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then the equivalence of the latter two forms implies that of the former. 

PROOF. By Lemma 1, the equivalence of the first two forms is 
tantamount to the existence of integers a and v satisfying 

(6) a2 = ai<x2 + bav + aa2cv2, a^a + bv s 0, aa2c ss 0 (mod a2) ; 

and the equivalence of the last two forms amounts to 

(7) aa2 = aaxa
2 + bay + a2cy2, &O>\OL + by s 0, a2cy ss 0 (food aa2), 

with some integers a, 7. If (6) holds, defining 7 = av yields (7). If (7) 
holds, then a\ by and a\ cy, and hence if (a, bt c) = 1, a (7 , and v^y/a 
is an integer. 

The importance of this lemma may be seen from 

LEMMA 3. For any primitive binary quadratic forms <f>i, • • • , <j>q of 
the same discriminant d, there can be found integers b, s, a%, • • • , aq 

such that 

(8) <t>i ~ [ait b, sax • • • aja{\ (i = 1, • • • , q). 

Furthermore, these integers can be chosen so that ai, - - - , aq, and 2d are 
coprime in pairs. 

PROOF. A primitive form represents primitively integers prime to 
any assigned integer, and any integer primitively represented can be 
taken to be the first coefficient of an equivalent form. Choose for a\ 
any integer primitively represented by <£i and prime to 2d ; for a2 any 
integer primitively represented by <f>2 and prime to 2a\d\ • • • ; and, 
finally, for aq any integer primitively represented by <f>q and prime to 
2a\ • • • aq^d. Then the 4>% are equivalent to respective forms 
[ai, bu C{] (f=al, • • • , q). By the Chinese Remainder Theorem, an 
integer b can be chosen to satisfy 

(9) b m bi (mod 2d) (i = 1, • • • , q). 

Then <l>i~[ai, b, hi], where d = 62—4a»At ( f ~ l , • • • , q), and hence 
since a\, • • • , aq, 2 are coprime in pairs, d~b2 — 4ai • • • aqr, with r 
an integer. 

4. Composition of binary quadratic forms. By the preceding 
lemma, there can be constructed within any two primitive classes C\ 
and C2, not necessarily distinct, of binary quadratic forms of the same 
discriminant, united forms of the type 

(10) <£i = [ah bh a2ci] in d, fa = [a2, bh axci] in C2. 

This is easily seen to be true when the classes are not primitive, if 
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merely their divisors are coprime. The divisors are integers, t\ and fe, 
such that 0i//i and 02^2 are primitive forms. The product, or com­
pound, of the forms 0i and 02 will be defined to be the form \a,\a2, 
fa, Ci], and will be denoted by 0102. The significance of this definition 
lies in the fact that , when h and h are coprirne, it defines a unique 
product class. 

THEOREM 2. Let the divisors of the classes C\ and C% of discriminant d 
be assumed coprime. Then, for all choices of united forms (10), the form 
[aia2, fa, ci] belongs to a unique class. 

PROOF. Consider, besides the forms 0i and 02, a second pair, 
03= [#3, b2f a±c2] in &, 04= [#4, fa, a$ci] in C2. I t is to be proved that 
0i02= [d\a2, i i , Ci]~[a3<X4, fai C2]=0304. The difficulty in applying 
Lemma 2 immediately lies in the circumstance that a\a2 and a%a^ 
may not be coprime, and hence that it may not be possible to obtain 
equal middle coefficients by merely adding multiples of 2aia2 to fa 
and 2a3a4 to fa. To circumvent this difficulty, we introduce inter­
mediate forms, with coefficients prime to both. Thus, an integer as 
can be chosen, which is primitively represented by &, and such that 
a$/h is prime to 2ai02#3#4î and an integer a*, primitively represented 
by C2, such that a*/h is prime to laxa^za^a^. Construct 05= [as, fa, Cz\ 
in C\, 06= [ae, &4, c*\ 'm C2. Since 2a\a2, a^/h, and a^/h are coprime in 
pairs, an integer fa can be found to satisfy 

(11) fa == Jxmod 2tfia2, fa/h ss b%/t\ mod 2a6/th fa/t2 « &4/femod 2a6/*2. 

Then d — b\ is divisible by each of ia&2, a^/h, and a^/h, and hence 

2 
d — fa = 4:aia2a&a^c6/t, t = /1/2, with c$ integral. 

Hence 0 i~ [a i , fa, a2a$a$c$/t]~[as, fa, a\a2a^li\, 0i02~[0i#2, hf 

a&iCt/t]. By Lemma 2, 0i02~[#6#2, *«» a%a^Ci/t]. Similarly, since 
02/^/06, the last displayed form is equivalent to [ewe, fa, a\a2Cf>/t\. 
We now choose an integer be such that 

fait s ô2/tf mod lazajt, fa/t s J6// mod 2a6a6A 

Then 03, 04, 0s, 06, 0304, and 0506 are equivalent to new forms with a 
common middle coefficient fa, respective first coefficients a3, a^, a^, 
#6, a3#4, a$a%; while the last coefficients are determined from d**b\ 
—^aza^atanCe/t, with c6 an integer. By Lemma 2, 0 3~05, 0306^0506 ; 
04/^/06, 0304/^0306/^0506/^/0i02. This completes the proof. 
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