THE ASYMPTOTIC DISTRIBUTION OF THE SUM OF
A RANDOM NUMBER OF RANDOM VARIABLES

HERBERT ROBBINS

1. Introduction. If a random variable (r. v.) Y is the sum of a
large but constant number N of independent components

() Y =X+ +Xn,

then under appropriate conditions on the X; it follows from the cen-
tral limit theorem that the distribution of ¥ will be nearly normal.
In many cases of practical importance, however, the number N is
itself a r. v., and when this is so the situation is more complex.

We shall consider the case in which the X; (=1, 2, - - - ) are inde-
pendent r. v.’s with the same distribution function (d. f.) F(x)
=P[X;<x], and in which the non-negative integer-valued r. v. N is
independent of the X;. The d. f. of N we shall assume to depend on a
parameter A, so that the d. f. of ¥ is a function of X which may have
an asymptotic expression as A— . In the degenerate case in which
for any integer N\, IV is certain to have the value A, the problem re-
duces to the ordinary central limit problem for equi-distributed com-
ponents.

In the general case the d. f. of NV for any A is determined by the
values wy=P[N=FE] (=0, 1, - - - ), where the wy are functions of A
such that for all ),

wr = 0, Dwr=1.
0

We shall use Greek letters to denote functions of the parameter A; in
particular we define

a= E(N) =) wk,
0
B* = E(N?) = Z wy- k2 (assumed finite for all A),
0
@ §
4% = Var (N) = Zwk-(k — )2 =p2— a?
0

e
0() = E(eFWN—0tr) = D wy-gib—atly,
0
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the last being the characteristic function (c. f.) of the normalized r. v.
(3) M= (N - a)r.

We shall use Latin letters to denote quantities independent of \; in
particular we define

o= B(X,) = f 2P (),
¥ = E(XY) = f +"dF (%),
¢ = Var (X)) = f (% — a)%dF(x) = B — a* (0<¢* < ),

f()) = E(eiXit) = f ei*tdF (x).
We then have for the r. v. (1),

EY) =2 owEX1+ -+ +Xi) = 2 wr-ka = ag,
0 0

E(Y?) = ) o E(X1+ - -+ + Xi)?

0

®) :
= > wi{ kb2 + k(k — 1)a?} = ac? + 2,
0
g% = Var (Y) = ac? + vy%?
We shall be concerned with the normalized r. v.
_ Y — E(Y) _ X1+ -+ Xy) — aa
(Var (¥))1/2 o ’

(6)
whose c. f. is

¢() = E(e?t) = zwk-E(emxﬂ“"'+xk>'°“/'1‘),

m _ Z‘E:wk.e_iaam. 1 <Ti‘)

By definition, Z has the limiting d. f. H(x) if whenever x is a con-
tinuity point of the d. f. H(x), limy., P[Z Sx]=H(x), or, equiva-
lently, setting
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Mn=fwwm@,

if for every ¢,
(8 lim ¢() = k().
A— 0

In particular, if (8) holds for 4(f) =e=*"2, then for every x,

1
lim P[Z £ ] =
A—oo (27(‘)1/2

f e I2du = Ho(x),

and Y is said to be asymptotically normal (« a, o).
2. Some general results.

THEOREM 1. Let

9) 6=ﬂ=<—1f-yn 0=ss1).
T ac? 4+ y%a?

If, as N>,

(10) a?—> o, = o(s?,

then

(11) o(t) = 0(88) - e~ A—8D12 4 o(1).

Proor. Since from (10),

N—a N — a\? 42
R
a? a? a4
it follows that (IV—a)/o?—0 in probability as A— «. Hence for any
a>0,

(12) 2-P[

al>d]=o(l) as A — o,
We now write (7) in the form

(13) o) = i Wy eilE—aat/o. {e—iat/af (_i)} k,
0

and define

(14) $1(t) = { ? wy - i (k—alatls } . {e““"‘f({-)} a;
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then

#0 = 040 = Bowecne fers(2)y

{2
S RO

whence

|6() — e1(8) | = 2::%

= +
| (k=a)/a?|>d | (k—a)/e?| S d
t a
<2 z wr + e-iatlvf(___)
(k—a)/d?|>d [
(15) | (b—a)/d?]
t k—a
I (6 I
| (k—a)/o?| S d g

N —a«a
ol [5e
o2

2

&) I

212

) = 1+ iat — 5’-2—+ o(#);

+ Max
Irlse

From (4) we have as t—0,

hence as g2—

otrer( 2 iat o' 1
()= 4T -+ o(Q))

2 2
c*? 1
=1-gate(3)
i o? 2t2 1 o?
eof( Y = L1 2 4 (W = e 1)
o 202 o?

= {e*1* + o(1)}.
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Thus

(16)

and

(17
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(o - e

= {e—-z’/z + o(1) } czalo'z,

{e-iaz/cf(_é>}a r= {c—c‘m + 0(1) } ctr,

Now fix t and €>0. Choose d >0, until now arbitrary, so that

(18)

|z — 2| < 4, || < d

imply that

(19)

|zc2'—1|<—€—-
2

Then choose \; so that A>\; implies that

(20)

N
ZP[

-« €
>d]<
2 2

[

and that the o(1) in (17) satisfies the inequality

21

|o(1)] < d.

Then it follows from (15) that for A >,

[6) = 0| < =+ =«

since € was arbitrary we conclude that

(22)

o) = ¢1(t) + o(1).

We can write ¢;(¢) in the form

¢1(%)

(23)

= { z::wk.ei(k—a)at/a} . {e—i“”’f(é)} ‘

o{:ﬁ’—t} At 4 o(1) }e'et = 6(88) - {112 + o(1) } 12
o

= 6(3%)- { e 12(1 + o(1)) } -
= 6(31) -~ A=I12 4 o(1),

which, with (22), completes the proof of the theorem.
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CoroLLARY 1. If (10) holds, and if as N>,

(24) a*y? = o(a),

then

(25) lim ¢(f) = & *'12,
AR

so that Z has the limiting d. f. Hy(x) and Y is asymptotically normal
(a a, o).

Proor. From (24) it follows that as A— », §—0. Moreover, con-
sidering the r. v.

(N — a)d
Y

we have E(M;) =0, E(M}) =82—0, so that M;—0 in probability. It
follows that

M1=

(26) E(eiMit) = 3 wy-eiabtlr = §(5t) — 1,
0

while

27 =82y 2

so that (25) follows from (11).
Until now we have not assumed that the normalized r. v. M defined
by (3) has a limiting d. f. G(x) as N> .

CoOROLLARY 2. If (10) holds, and if N is asymptotically mormal
(ay ), then Z has the limiting d. f. Ho(x) and Y is asymptotically
normal (aa, ).

Proor. In this case we have

lim 6(r) = /2,

A

and the convergence is uniform in the interval 0 S7 <¢. Since 0S8 =1
it follows that as A— =,

(28) 8(5t) = e~@0"12 + o(1),
and therefore from (11),
o) = {1 + o)} - {em a1}t o(1) = &2 + o(1).

The assumption (10) is actually superfluous in this case as we shall
see later (Corollary 4),
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Let us now consider the case in which M has a non-normal limiting
d. f.

COROLLARY 3. If (10) holds, and if M has a non-normal limiting d. f.
G(x), so that

(29) lim 6(¢) = g(¥) = f €i=dG(x) §ée“’/2,
AR
and if
2
(30) lim ca = §
roo Q22

exists, 0Ss< =, then

t 2 %
(31) iir.r; () = g(ml—ﬂ—).e—(t<e/a+c))"”) 12 o 12
so that Z has the non-normal limiting d. f.
14 s\
(32) Hw)=GM1+9WhH<x( > )
s

where * denotes the operation of convolution.

ProoF. In this case as A— », §—(1+s5)~12, whence (31) follows as
before.

If s=0 (that is, if a=0(a%y?)) then limy., ¢(¢) =limx., 0() =g(¢),
so that Y has the same asymptotic distribution as V. If 0 <s < « then
the limiting d. f. of Z is the convolution of a normal with a non-
normal d. f. If s= o we refer to Corollary 1.

LeMMA 1. If M has a limiting d. f. G(x) such that G(x) >0 for every
finite x, then (10) holds.

Proor. First we shall show that y=o0(a) as A= ». Suppose not.
Then there exists a constant B >0 such that for any A, there exists a
A>)\; such that

(33) a/y < B.

We may assume that — B is a continuity point of G(x). Now choose A,

so that for all A>A,,

N - G(=B) _G=B)
2 2

then for some A >\; we have both (33) and (34), whence

(34) P[ g—ﬂ>a—m— 0;
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N—a«a —a N —«
0=P[N<0]=P[ <———]gP[ §-—B:|>0,
Y Y Y

a contradiction. It follows that ¥ =o0(«) and hence ¥ =0(c?).

We shall now show that a— ». If not, then since ¥ =o0(), it fol-
lows that ¥—0, which we shall show to be impossible.

From Tchebychef’s inequality, y—0 implies that

P[|N —a| <1/2] -1

But there is at most one integer k satisfying |k-—-a| <1/2; denoting
this integer by k\ we have

P[N = h]—>1.
Define

. k)\—a
L=hminf{ }

Ao Y

Either L> — © or L= — . If the former, let x <L be a continuity
point of G(x). Then

G(2) = lim P[N ; %< x]

A0

But for sufficiently large A,

whence

N —a
P[ éx]<1—P[N=kx].
Y

It follows that G(x) =0, a contradiction. On the other hand suppose
L= — », Then for any x and sufficiently large A,

h—a

< %,
oy

whence

P[N;'“ gx]g P[N = &)

It follows that G(x)=1. Since x was arbitrary, G(x) is not a d. f.
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Thus a— % and hence 62— . This completes the proof.

It follows that in Corollary 3 we may drop the assumption (10)
provided G(x)>0. Moreover, Corollary 2 may now be given its final
form.

COROLLARY 4. If N is asymptotically normal (e, v) then Y is asymp-
totically normal (ca, o).

We shall conclude this section with a theorem concerning the
“singular” case in which « and v are of the same order as A—«, and
a =0, so that (10) does not hold.

THEOREM 2. Let a =0. If as \— =

(35) a— w, v/a—r 0<r< ),

and if M has a limiting d. f. G(x) (necessarily such that G(x) =0 for
some x), then

(36) lim ¢(¢) = fwe“‘z”/szl()’) = gx(if)

A=+ 0 2 ’
where
37) 6 =6(T=), 80 = [ et

r 0
Thus the limiting d. f. of Z is
s x

38) @ = [ m <;T/;)dG1(y).

Proor. We have for a =0,

o0 = Zoet () = Tl (o)} K

Now as A— o,
() = Gt =

— i log f(t/(ac)?)

’

Set

4

then as A—>»,
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(39) §—it?/2,
and
(40) $(8) = 2 wi-eirHi,
0
Now let
My =1rN/v;

then for any x such that (x —1)/7 is a continuity point of G(x),

rN N —a x o
P[Mléx]=P[—§x]=P[ é——————]
Y 0 r 0%

- G(x — 1) = Gy(#),

r

where G,(x) is defined by (37). It follows that
by = 9 = [ e
0 0

uniformly for every z in some neighborhood of z=1:2/2. Hence from
(39) and (40),

‘t2 ©
lim ¢(t) = gl(%) =f e VI%G(y).
— 00 0

fo at,eﬂ’ulszx(y) = fo " f_:e“”dzHo<;-%> dGy(y)
- f_:emdz{ fo wHo(y—lxlg)dGl(y)},

it follows that the limiting d. f. of Z is given by (38). This completes
the proof of Theorem 2.

From the relation M;=rM+ (re) /7 it follows that g,(f) =ei- g(rt),
where g(¢) is defined by (29). Hence (36) may be written in the equiva-
lent form

Since

g
lim ¢(f) = *'/2 g(lr—-).
Ao 2

3. Some examples. (i) Let N have a Poisson distribution with
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parameter A, so that
wp = e (AF/RY) (B=0,1,--+);
then
a=5t=) o2 = \b%

From Corollary 4 it follows that Y is asymptotically normal
(Aa, b A'2), Note that (10) holds but (24) does not.

(ii) Let N have a binomial distribution with parameters A, p,
where M\ is an arbitrary positive integer and p and ¢=1—p are con-
stants, so that

Al

PERR— Y 7% S = v e .
TR (B=0,1,-+-,N);

W

then
a = Ap, 2 = Apg, o? = Ap(c? + qa?).

Again it follows from Corollary 4 that Y is asymptotically normal
(Apa, (\p(c*+ga?))*?).
(iii) For any integer N suppose that N can assume the two values
A, 2\, with probability 1/2 in each case. Then
3\ . A2 . 3\ " A? .
= — = — = —C - ac,
o= ¥ 7 G 5 1
First suppose ¢ #0. Then as A—« (10) holds, and the quantity s of
Corollary 3 is 0. Moreover, 8(¢) =cos ¢, so that M has the non-normal
limiting distribution for which P[M=—1]=P[M=1]=1/2. It fol-
lows from Corollary 3 that Z has the same limiting distribution.
The case is quite different when ¢=0, for then vy>o0(¢?), and
Theorem 2 applies. We have

1 1
et el = e g g,

Ao & _é_
so that
1
lim ¢(¥) = 5 {et'13 4 g2},
A0

Thus the limiting d. f. of Z is a mixture of two normal d. {.’s with
means 0 and variances 2/3 and 4/3.
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