
ON THE HOMOTOPY TYPE OF ANR'S 

J. H. C. WHITEHEAD 

1. Introduction. If X and Y are any spaces and if ƒ: X—>Y and 
g: F—»X are maps such that gf—1, then g is called a left homotopy in­
verse of ƒ and ƒ a rigfc/ homotopy inverse1 of g. In this case we shall 
say that Y dominates2 X. If Y dominates X and Z dominates Y 
then it is easily verified that Z dominates X. If g is both a right and 
left homotopy inverse of ƒ it is called a homotopy inverse of ƒ and ƒ will 
be called a homotopy equivalence. Thus the assertion that f:X—»F is 
a homotopy equivalence claims that X and Fare of the same homot­
opy type and, moreover, that ƒ has a homotopy inverse. 

Two maps,/0, fi:X—>Yare said (cf. [l, pp. 49, 50] and [2, p. 344]) 
to be w-homotopic if, and only if, /o$~fi$ for every map,$:P—»X, 
of every (finite) polyhedron, P, of at most n dimensions. By an 
n-homotopy inverse of a map, /:X—»F, or an n-homotopy equivalence 
we mean the same as a homotopy inverse or a homotopy equivalence 
with homotopy replaced by w-homotopy throughout the definition. 

By a CR-space we shall mean a connected compactum, which is 
an ANR (absolute neighborhood retract). Any CR-space, X, is dom­
inated by a finite simplicial complex [5, Theorems 12.2, 16.2, pp. 93, 
99], even if its dimensionality is infinite. We shall use AX to denote 
the minimum dimensionality of all (finite, simplicial) complexes 
which dominate X. Then AX ̂  dim X and we may think of AX as a 
kind of "quasi-dimensionality," noticing, however, that AX may be 
less than dim Xf even if X is itself a finite polyhedron. 

Let X, F be CR-spaces, and let iV-max (AX, AF). Le t / :X-»F 
be a given map and let/n:7rn(X)—»7rn(F) be the homomorphism in­
duced by/ . If ƒ is a homotopy equivalence then fn is an isomorphism 
onto for each » *> 1. In §3 below we prove a sharper theorem than the 
converse, namely: 

THEOREM 1. /ƒ/n:7rn(X)—»7rn(F) is an isomorphism onto f or each 
w = l, • • • , N, then f:X~->Y is a homotopy equivalence.3 

Received by the editors January 26, 1948. 
1 Cf. [l ]. Numbers in brackets refer to the references cited at the end of the paper. 
2 In this case the homomorphisms Hn( Y)-*Hn{X) induced by g : F->X are all onto, 

likewise the induced homomorphisms 7rn(F)—*7rn(X), assuming X, F to be arcwise 
connected. In fact iJ»(F), or irn(Y) (n^2), may be represented as the direct sum of 
Hn(X), or Tn(X), and the kernel of this homomorphism. 

3 If X and Fare of the same homotopy type, then each dominates the other and 
AX » A F. Theorem 1 is formulated with a view to applications in which it is possible to 
calculate separate upper bounds for AX, A F (for example, dim X, dim F). 
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We shall also prove : 

THEOREM 2. The map f:X—*Y is an (N—l)-homotopy equivalence 
ift and only if, fn'^n(X) —nrn(Y) is an isomorphism onto for each 
rc = l, • • , N-l. 

If AX = A 7 = 0 then it is obvious that X and F, being connected, 
are both absolute retracts. Therefore any map, X—»F, is a homotopy 
equivalence and Theorem 1, likewise Theorem 3 below, is trivial. 
Similarly Theorems 2 and 4 are trivial if NS1. Therefore we shall as­
sume that iV~ 1 in Theorems 1 and 3 and N*z2 in Theorems 2 and 4. 

Theorem 2 is significant in the theory of polyhedra or cell com­
plexes. For the (n — l) -homotopy type of the ^-section is a homotopy 
invariant of a given complex K (that is, is the same for any complex 
of the same homotopy type). I t is equivalent to what I have previ­
ously called the n-group (see [6] and [7]) of K, but now propose to 
call the n-type. These statements will be proved in a later paper in 
which the w-type of a complex will be further discussed. 

A map fiX-^Y is not necessarily an m-homotopy equivalence if 
fu * * • > fm are isomorphisms onto, where m<N—l. For example, 
let F be a complex projective plane, let J C F be a 2-sphere, which is 
a complex line in F, and let ƒ :X—»Fbe the identity. If g: Y—+X were a 
2-homotopy inverse of ƒ, then g\X = gf\X—>X would be of degree 
+ 1 and would therefore induce the identical automorphism of TZ(X). 
But fzWz(X) = 0. Therefore it would be absurd to suppose that g\X 
can be extended to a map g : F—>X. 

Theorem 1, restricted to polyhedra and weakened by replacing N 
by max (dim X + l, dim F), is essentially a restatement of parts of 
Theorems 15 and 17 in [6, pp. 273 and 277]. The generalization to 
CR-spaces was suggested by a theorem proved by Sze-Tsen Hu in 
[9], However we do not actually use Hu's theorem. Instead we fol­
low Lefschetz's approach to the subject and eventually deduce Hu's 
theorem in a modified form. Of course Theorem 1 does not mean 
that X and F are necessarily of the same homotopy type if irn(X) 
«7rn( F) for all values4 of n. The crux of the matter is not merely that 
Tn(X) «7Tn(F) but that a certain set of isomorphisms, fn'7rn(X) 
-~>7rn(F), can be "realized geometrically" by means of a map f:X—»F. 

Let X be the universal covering space of a given CR-space, X> 
with base point #0£-X\ Then a point, # £ - ? , is a homotopy class of 

4 For example x„(P4XS3) « irn(S
5XS2) for every n ^ 1, where P4 is a complex pro­

jective plane and Sr is an r-sphere. This example is due to Hsîen-Chung Wang. For 
other examples see [10]. 
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paths, with fixed end points, joining xo to the point p # £ X , where p 
is the projection, p : X—»X, which is thus defined. Thus X contains a 
base point, #o£J?, which corresponds to the constant path on #o-
If TTI{X) = 1 we identify X with X, taking x=px. Let Hn(X) be the 
nth. homology group6 of X. Let Y be another CR-space, let F, 
Hn{Y) be similarly defined and let p also denote the projection 
p : F—»F. Then a given map f:X—»F can be "lifted" into a unique 
map ƒ: J?—»F, such t h a t / p = p / , fxo — yo, where yo—fxo and Jo are the 
base points in Y and F. The map ƒ induces homomorphisms Hn(X) 
-—>iJM(F), which we shall also describe as induced by f:X—>F. In par­
ticular F may be a finite, AX-dimensional polyhedron, which dom­
inates Xy and f:X—»Fa map with a left inverse g: F—>X. Let g: T-+X 
be the map obtained by lifting g. Then a homotopy &ƒ—>1 may be 
lifted into a homotopy lf—*u> where u\X—»J? is a transformation in 
the covering group (that is, pu=p). Therefore u~lg is a left homotopy 
inverse of ƒ (likewise /w"1 is a right homotopy inverse of g) and F 
dominates X. I t follows that i I n ( J ? )=0 if n>àîm F = dim F = A X . 
Therefore, if X, Y are any two CR-spaces, i J w (X)=0 , i J w ( F ) = 0 if 
w>max (AX, AF) . We shall prove: 

THEOREM 3. /ƒ Z , F are <wy CR-spaces, then a map f:X—>Y is a 
homotopy equivalence if each of the induced homomorphisms fi:iri(X) 
—>7ri(F), Hn(X)-~*Hn(¥)(n~2, 3, • • • ) is an isomorphism onto. 

As a corollary to this we have : 

COROLLARY 1. If X, Y are simply connected CR-spaces, then a map 
ƒ : X—» F is a homotopy equivalence if each of the induced homomorphisms 
Hn(X)—±Hn{Y) (n~2, 3, • • • ) is an isomorphism onto. 

Let X be a finite cell complex.6 Then the groups Hn(X) may be 
defined in terms of chain groups,7 Cn(X), which are free 9Î(X)-
modules, where 8î(X) is the group ring of iri(X), with integral co­
efficients. According to Eilenberg and Steenrod a map,/ :X—>F, of 
X into another complex F, is said to be cellular if, and only if, 
fXnQYn for each w = 0, 1, • • • , where Xn, Yn are the n-sections of 

6 It is to be understood that all our homology groups are defined, as in [12], in 
terms of singular chains with integral coefficients. 

6 That is, a complex of the sort defined on p. 1235 of [7] or in a forthcoming book 
by S. Eilenberg and N. E. Steenrod. 

7 Cf. [ i l , chap IV, §17]. The generalization from ordinary polyhedral complexes to 
the more general cell complexes will be described in the book by Eilenberg and Steen­
rod. Cn(X) is the relative homology group Hn(X

n, Xn~l), where Xr is the r-section of 
X. For an account of chain mappings and chain equivalences see [4] and [12]. 
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X, F. A cellular map, ƒ :X--»F, determines a chain mapping, 7 : Cn(%) 
—ïCniY), which is an operator homomorphism, for each n~Q, 1, • • • , 
in the sense that y(pc) = (ap)yc, where p£9?(X), c(E.Cn(%) and 
a:di(X)—»9î(F) is the homomorphism induced by fi'Tri(X)—*ici(Y). 

A chain mapping y:C(X)->C(?) of the family C(J?) - {C*(*) I 
into the family C(f) ~ {Cn(F)} is defined in purely algebraical terms 
as a homomorphism, a:7Ti(X)—*7Ti( F), together with a family of oper­
ator homomorphisms, y:Cn(%) —>Cn(¥), such that 0 7 = 7 9 , where ô 
is the boundary operator. If 7 is the chain mapping, which is induced 
by some (cellular) map / :X-->F, then ƒ will be described as a geo­
metrical realization of 7. From Theorem 2 we have the corollary: 

COROLLARY 2. If a given chain equivalence* y:C{£)—*C(f) has a 
geometrical realization, f \X—*Y, then f is a homotopy equivalence. 

This corollary shows that the problem of determining conditions 
for a given chain mapping to have a geometrical realization is funda­
mental in the homotopy theory of complexes. In a later paper we 
shall prove that, if X is at most 3-dimensional, then any chain map­
ping, 7 : C(J?)—»C(F), has a geometrical realization, subject to certain 
conditions on 7:Co(-£)~-»Co(P). 

Let X, F , / : X - > F be as in Theorem 2 and let iV = max (AX, AY). 
Then we prove, as a companion to Theorem 2: 

THEOREM 4. The mapf:X~>Yis an (N—I)-homotopy equivalence if 
(a) each of the induced homomorphisms /r.7ri(X)-->7ri(F), Hn(X) 

—>Hn(¥) (w = 0, • • - , N-—2) is an isomorphism onto, 
(b) the induced homomorphism HN~I(%)—>HN-I(¥) is onto, 
(c) fx-iiiTtf-iiX)—»7rjv-i(F) is an isomorphism into. 

Conversely, if f:X—>Y is an (N—l)-homotopy equivalence, so is the 
lifted map, f'.X—ïf, and Hn{X)—*Hn(¥) is an isomorphism onto for 
» « 0 , 1, • • • ,N-l. 

2. A lemma on mapping cylinders. Let A, B be any two spaces and 
AoQA, BQQB any subsets of A, B. We shall say that the pair (B, Bo) 
dominates (A, A0) if, and only if, there are maps, ƒ : (A, A0)-^(B, Bo) 
and g:(B, Bo)—>(A, A0), such that gf is deformable into the identity 
by a homotopy of the form %t»(A, Ao)~~>(A, Ao). 

Let X, Y be any compacta and ƒ : X—»F a given map. We form the 
topological product X X I and, replacing X by a homeomorph, if nec­
essary, assume that no two of X, F, XXI have a point in common. 

8 It is to be understood that the homomorphism fi'iri(X)-~+ri(Y) associated with a 
chain equivalence is an automorphism onto. 
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Let Z be the mapping cylinder, which is formed by identifying9 

(x, 0)<EXXI with x and (x, 1) with fxE Y for each xEX. Let P, Q 
be compacta, which dominate X, F, respectively, and let X:-XT—»P, 
\':P->X, jit: F-»<2, p':Q~>Y be maps such that X'X^l, JU'M~L Let 
R be the mapping cylinder of the map fjf\':P—>Q. Then our lemma is: 

LEMMA 1. The pair (R, P) dominates (Z, X). 

Let £t:X—*X and rjt: F—>Fbe homotopies such that ^o^X'X, £i = l, 
>7o=M/M» 7̂i = 1 and let v:(Z, X)—>(R, P) be given by 

v(x9 t) = (\xt It) (if 0 ^ 2 / ^ 1 ) 

= pfaMx (if 1 g 2/ g 2), 

vy = jay (x (£ X, y Çz F). 

This is single-valued, hence continuous (see [8, §5]), since (Xx, 1) 
~Qtfk')\x =*!*%&, nfbx^iifx. Let ?':(£, P)-^(Z, X) be given by 

v'(pt t) = (\'pt 2t) (if 0 ^ 2 / ^ 1 ) 

= V2-.2tf\'p (if 1 ^ 2 ^ 2 ) , 

/g = vtq (pGP,qe Q). 

This is single-valued since (X'£, Vj—fK'p — fixfh'p and rjtfk'p—ix' 
•<jif\')p. The map v'v\(Z, X)->(Z, X) is given by 

v'v(x, t) = v'(X*f 2t) (if 0 ^ 2 / ^ 1 ) 

= v'tfb^ix (if 1 £ 2* S 2), 

or by 

„'„(», t) « (X'Xs, 40 (if 0 ^ 4 ^ 1 ) 

= 7?2_4«/X/Xx (if 1 ^ 4 / ^ 2 ) 

= n'txfat-ix (if 1 1 2 * 1 1 ) , 

The desired homotopy, f,:(Z, X)—>(Z, X), is given by 

r.(*, /) = (&*, (4 - 3^)0 (if 0 £ * g 1/(4 - 35)) 

= 1?2-(4~3*)</k* Of 1/(4 - 3*) £ * £ (2 - 5)/(4 - 35)) 

= W W * ) * (if (2 - 5)/(4 - 35) S * £ 1), 

9 The points in X, Y shall retain their individualities in Z, so that X, FC<£. 
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where p(s, O a {(4 — 3s)t+3s — 2}/2. I t is easy to verify that f, is 
single-valued and that ÇQ — V'V, fi = l. Moreover f«# =£S#£-X" if 
# = (#, 0 ) £ J . Therefore (i?, P) dominates (Z, X). 

3. Proof of Theorem 1. Let X, Y a n d / : X-*Y satisfy the condi­
tions of Theorem 1 and let Z be the mapping cylinder of/. The theo­
rem will follow from [l, Theorem 3.7, p. 45] (see also [3]), when we 
have proved that X is a deformation retract of Z. 

Let g6\Z—^Z be the deformation which is given by g«| K == 1 ? 

gs(x, t) = (x, s+t — st) (O^s^gl) . Then go = l, giZ— Y and gix=*fx for 
each x = (x, 0) £ X . Let k : Z—» Y be the map which is given10 by kz = g\Z 
for each z £ Z. Then gi=jk, f = ki, where i, j are the identical maps 
i:X->Z, j : Y-+Z. Let Wn(X), x„(Z), 7rn(Z, X) be referred to a base 
point XQÇZX, and 7rn(F) to / ^ o G ^ as base point. Let in:Tn(X) 
—>wn(Z), kn'TTn(Z)—>7rn(F) be the homomorphisms induced by iy k 
and let/n:7rn(F)—>7r„(Z) be the homomorphism induced b y j and the 
segment (cf. [13] and [6, pp. 279 et seq.]) (#o, / ) , which joins xo to 
fxo. Since kj~l: Y—*Y, jk~gi~l:Z—>Z and since g8xo travels along 
the segment (xo, I) in the homotopy g8, it follows that j n is an isomor­
phism onto and that kn is its inverse. Since ƒ = ki we have fn = knin. 
Therefore in—jrjn and in, like / n , is an isomorphism onto for 
n » l , • • • , N. 

Let 2^nSN and consider the homotopy sequence 

(3 . 1) lTn{X) - i Tn(Z) ^ Tn(Z, X) ^ Tn-.l(J0 ^ TT^Z) , 

in which (1) is in and (4) is in_i. Since (1) is onto it follows from the 
exactness of the sequence that (2) maps 7rn(Z) into zero. Since (4) is 
an isomorphism it follows that (3) is into zero and (2) is onto. There­
fore 7Tn(Z, X) = 0 for n = l, • • • , N, where 7Ti(Z, X) = 0 means that1 1 

ii:7Ti(X)-~>7Ti(Z) is onto. Notice that if, in addition, i#+i is onto, then 
it follows from (3.1) that 7rN+i(Zt X) = 0 . 

Let P be a finite, AX-dimensional simplicial complex, which dom­
inates X, and Q a finite, A F-dimensional simplicial complex which 
dominates F. Let Ry X, /x, rjt, etc. mean the same as in §2. Since Z is 
(obviously) arcwise connected and since 7rn(Z, X ) = 0 for n 
= 1, • • • , iV^dim Q it follows from a standard argument12 that 

10 We distinguish between maps u:A —>B, v:A—*C, where B(ZC, B&C, even if 
ua = va for each a&A. 

11 Since X is arcwise connected this is equivalent to the condition that any arc in 
Z, with its end points in X, is deformable, with its end points held fixed, into an arc 
in Z . 

12 [14, p. 526]. This argument is recapitulated, in a slightly more general form, in 
§8 below (Lemma 5). 
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there is a homotopy, ôtlQ—>Z, such that 5o^vf\Q^jixf
t 5\Q(ZX. 

Therefore 5</x: Y~*Z is a homotopy such that SOM—JM'M—JÏÏO, 8ijuF 
CSiQQX. Moreover we assume, as we obviously may, that Si/x/tfo^tfo, 
where XQ is the base point of Tn(X) and ?rn(Z). Let h%\ Y—>Z be the 
homotopy which is given by 

ht = ii?i-2« (if 0 g It g 1) 

= Ô2i_iM (if 1 ^ 2 / ^ 2 ) . 

Then hQ=j, AiFCZ, /h# 0 ==*<)• Therefore the resultant of the homot­
opy gt:Z—>Z, followed by htk:Z—>Zt is a deformation, At:Z-*Zt such 
that Ao = l, AiZC-X\ Aiffo-xo. 

Let c£7Ti(Z) be the element which is represented by the track of 
xo in the homotopy A*. Since i\ is onto we have c~i\a for some 
aÇzTTi(X). Let 0o*. (Sn, po)—>(Zt Xo) be a map representing a given ele­
ment 7£7Tn(Z)(t tà2), where £0 is the base point in the standard 
w-sphere Sn. Then 0*=Af0o is a deformation of 0O into the map 0i = i0, 
where 0:(Sn , £0)->(X, *o) is given by Op^AJop (pE:Sn). Therefore 

y = cinoL = (iia)(4«) = initio), 

where aG^n(X) is the element represented by 0 and cina, aa are the 
images of inoty a in the automorphisms ([13] and [6, pp. 279 et seq.]) 
determined by c, a. Hence i n is onto for every w ^ l . Taking w = iV+l , 
it follows from (3.1) that TT^+I(Z-, X) = 0 . 

It follows from an extension of a theorem due to Borsuk ([15] and 
[8]) that Z is an ANR. Therefore the homotopy, dt:Q-~>Z, defined 
above, can be extended, first throughout P^JQ by defining dtp 
= j>'££X if pG.Pt and then to a homotopy S ƒ :R~*Zy such that 
So' =v'. Since TT„(Z, X ) = 0 i f l g n g i V + 1 and since N + l ^ d i m R, it 
follows from repeated applications of Lemma 5, in §8 below (cf. the 
proof of Lemma 6), that there is a homotopy, pt\R-*Z, rel. P (that 
is, p^P—P^P), such that po = 5/ , piRCZX. The resultant of 8/, fol­
lowed by pu is a homotopy, <£«:i?—>Z, rel. P , such that <f>o — v', <t>\ R 
CX. Then <j>tv\Z—±Z is a homotopy such that ^ o P ^ ^ ^ f o » # I P Z 

C<t>iRCX. Therefore the resultant of $W.(Z, X)--»(Z, X), followed 
by 0 ^ , is a homotopy, i^*:(Z, X)—>(Z, X) , such that t/'os=l, yp\ZQX. 
It follows from [l, Theorem 1.4, p. 42], and [3] that X is a deforma­
tion retract of Z and the proof is complete. 

Notice that Theorem 1 follows more directly on the alternative 
hypothesis that fn'

,n'n(X)-~>wn(Y) is an isomorphism onto for n 
= 1, • • • , m~ 1 and / m is onto, where w = max ( A Z + 1 , A F ) = d i m R. 
For in this case it follows from (3.1) that 7Tn(Z,X) = 0 for w = l, • • ',tn 
and the paragraph showing that 7TJV+I(Z, X) = 0 is unnecessary. 
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L e t Z a n d X C Z b e C R - s p a c e s a n d l e t 7 r n ( Z , Z ) = 0 f o r n = l, • • • , w 
= max ( A X + 1 , AZ). Then it follows from the homotopy sequence 
(3.1) that in\irn(X)--*7Tn(Z) is an isomorphism onto for w = l, • • • , 
w —1 and that im is onto. Therefore the identity map i:X~»Z is a 
homotopy equivalence, whence X is a deformation retract of Z. 
Hence we have the modified form of Hu's generalization of Hure-
wicz's theorem ([14, Theorem IV, p. 522] and [9]): 

COROLLARY.13 If 7rn(Z, X)=Q for » * 1 , « • • , max (AX+1 , AZ), 
then X is a deformation retract of Z. 

4. Proof of Theorem 2. Let fn^n{X)-yirn{ Y) be an isomorphism 
onto for n ==» 1, • • • , N— 1. Using the same notation as in §3, we shall 
prove that i:X—*Z is an (iV—1)-homotopy equivalence. Since 
&:Z—>Fis a homotopy equivalence and f = ki it will then follow that 
ƒ is an (iV—1)-homotopy equivalence. It follows from (3.1) that 
7Tn(Z, X) = 0 for « = 1, • • • , iV — 1. Therefore there is a homotopy, 
S*:(?—>Z, such that 5O=JM'» öiQ*r~'1C-X', where Qn is the w-section of 
Q. Since ijy-i is an isomorphism it follows from an argument which is 
similar to one used in proving Lemma 6, in §8 below, that di\Q

N~1 

can be extended to a map id, where 0 is of the form d:Q—>X. Then 
id\QN-l~Jix'\QN-\ Since 0, /x, * are of the form k:Z-*Y, fi: Y~*Q, 
0:Q~-+X they have a resultant dfxk:Z--*X. I say that dfxk is an (iV— 1)-
homotopy inverse of i:X—>Z. For let if be a finite polyhedron of at 
most «AT—l dimensions and let <i>\K—^X be a given map. Then fxkicj) 
maps K into <2 and is homotopic to a map, <I>':K—>Q, such that 
<t>fKCQN-K Since *0| ( F - ^ y l G*"1 it follows that i0<£'~>'0 ' . 
Therefore 

i$fj,ki(l> c^. id<t>' c^jix'tf c^jix'fxki<t>. 

Since /z'/x—!>.ƒ&—1 it follows that 

i6ixki(j)C^jki<l> c^ i<j> 

and hence that 0,uH<£~<£, according to Lemma 6 below. Therefore 
0/*H~iv~iL A similar but rather simpler argument shows that 
iOfxkc^N_il. Therefore i, and hence f:X—*Y9 is an (iV—l)-homotopy 
equivalence. 

Conversely14 let f\X—>Y have an (iV--l)-homotopy inverse, 
13 If dim (Z—X) <AX-j-l this is weaker than Hu's version. 
14 This is non trivial because of questions concerning the base point. For example, 

let u, u':(Sn, po)~->(X, xo) be maps representing two given elements of irn{X) 
«7r»(X, #o). Assume that gfXQ=XO. Then the images of ƒ><> will, in general, describe 
circuits, which represent different elements of 7ri(X, xo)t in the homotopies gfu&u, 
gfu'c*u'. 
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g: Y—>X. Let vertices po(~P0, go G o 0 be chosen as base points for all 
the groups 7rn(P), Tn(Q) and let Xo—^'po, ^o=M72o be taken as base 
points for irn(X), 7rn(F). After suitable homotopies of X, ju> if neces­
sary, we assume that \x0=*po, M^o^öo- We then deform ƒ so that 
fx0—yo and finally g so that gyo — tfo. Let gn\Trn(Y)—nrn(X) be the 
homomorphism induced by g and let Xn, Mn, Xn', Mn be the homomor-
phisms of irn(X), 7rn( Y), rn(P), irn{Q), which are induced by X, ju, X', /x'. 
Since X'X~1, /i'/x—1 we have Xn'Xn^a», iinixn — fini where an, j3n are 
automorphisms15 of 7rn(X), x n (F ) . Also gf\'\PN~l~\'\PN-\ whence 
gnfn^n —oin^n if l=£»=£iV-- 1, where an' :7rn(I)->Xn(X) is an auto­
morphism. Therefore 

gnfnOin = gnfr^n Xn = <Xn X» X» 

==: OJn 0 ! n , 

whence gnfn^oin* Similarly fngn^Pn where /3n ' :7rn(7)~^rn(F) is an 
automorphism. Hence16 it easily follows that fn is an isomorphism 
onto and the theorem is established. 

5. Lemmas on homology. Let A and BQA be any arcwise con­
nected spaces. Then we have: 

LEMMA 2. If the injection homomorphism ii:wi(B)—>iri(A) is an 
isomorphism (into) then 7r2(-4, B) is Abelian, 

Consider the homotopy sequence 

T2(A) - i 7T201, B) A Ti(B) A 7TiC4). 

If (3) is an isomorphism, then (2) is into zero and (1) is onto. There­
fore the lemma follows from the fact that ^(A) is Abelian. 

LEMMA 3. If 7riC<4) = l then the natural homomorphism T2(At B) 
—>i72(-4, B) is onto and its kernel is the commutator subgroup of 
7r2(.4, B). If also flri(B)«l and Hr(A> 5 ) = 0 for r = l, 2, • • • , w - 1 
(w^2), then the natural homomorphism Trn(A, B)-^Hn(Ai B) is an iso­
morphism onto. 

This is an extension of a theorem due to W. Hurewicz, to which it 
reduces in case B is a single point. S. Eilenberg [12, p. 443] has given 
a proof of Hurewicz's theorem which, with minor modifications, 
establishes Lemma 3. 

On combining Lemmas 2 and 3 we have the following lemma. 

15 These are inner automorphisms if « » 1 and are due to the operators in TTI(X), 
TTI(F) if « > 1 . 

16 Cf. (7.4) below. 
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LEMMA 4. If TTI(A) « 1, TTI(J5) « 1, Hn(A> B)—Ofor every value of w, 
then Tn(At B) = 0 for each n. 

6. Proof of Theorem 3. Let ƒ : X-* F be a map which induces 
isomorphisms of iri(X) and Hn(X) (w = 0, 1, • • • ) onto 7Ti(F) and 
Hn(¥) and let the notation be the same as in §3. Let 2 be the uni­
versal covering space of Z, with XoÇzX as base point. Since f\lTTI(X) 
—*TTI( F) is an isomorphism onto it follows from an argument used at 
the beginning of §3 that iiiir^X)—»7Ti(Z) is an isomorphism onto. 
Therefore we may identify X, and similarly F, with the sub-sets of 2 
which cover X and F respectively. Then it follows from arguments 
similar to those at the beginning of §3, including (3.1), with X, F, Z 
replaced by X, f\ 2 and homotopy groups replaced by homology 
groups, that all the relative homology groups Hn(2, X) (n = 1, 2, • • • ) 
are zero. Since wi(X) = ly 7TI(2) = 1 it follows from Lemma 4 that 
7Tn(£, X) = 0 for each n à 1. Therefore 7rn(Z, X) « 0 (n ê 2) and ix:wi(X) 
—>7Ti(Z) is onto. Therefore the theorem follows from the proof of the 
simpler version of Theorem 1, which was mentioned towards the 
end of §3. 

7. Proof of Theorem 4, I t follows from the conditions (a), (b) of 
Theorem 4 and from (3.1), with X, F, Z replaced by X, F, 2 and 
homotopy groups replaced by homology groups, that Hn(2, X) = 0 for 
n = 2 , - - - , i V - l . Therefore irn{2y X) = 0 and hence 7rn(Z, X) = 0 for 
w = 2, • • • , N—l. Also/ i is onto, whence 7Ti(Z, X ) = 0 , and /;y-i is 
an isomorphism. Therefore the first half of Theorem 4 follows from 
the proof of Theorem 2. 

The second half of Theorem 4 is trivial if iV = 2, since X and F are 
simply connected. Therefore we assume that N*z3. Using the same 
notation as before, let P be the universal covering space of P , with a 
base point £o£P° . As at the end of §4, let the base points XoÇ:X, 
yoE F, qoGQ0 be such that 

(7.1) x0 = A'̂ o = gyo, yo = M'?O = fxo, 

and let #0, ?o, etc., be the base points in X, P, etc. Let V'.P—^X be the 
map which covers X':P—»X, meaning that X'^o^^o and X'p—pX', 
where p denotes both projections piP—^P, p:X-+X. According to a 
remark in §1 the map X' has a right homotopy inverse, \:X—*P. 

Let ho, h\\X—>A be maps of X in any space, A, and let 

(7.2) *0V | i5*"1 ^ *iV | / * - x , 

where .Pw is the w-section of P. Let <t>:K—>X be a given map, where 
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K is a polyhedron and dim K^N—1. Then %<t>:K—>P is homotopic 
to a map, <f>', such that <j>'KQ.PN~~l. Since X'Xc^l we have hi<t>cxhi\'%<l> 
c^AA'tf' (*~0, 1). Since <t>'KCPN~l it follows from (7.2) that A0X'*' 
~AiX'#' and hence that h^t>c^hi<j>. Therefore 

(7.3) h~N„ihh 

in consequence of (7.2). 
Let /:X—>F and g: Y~>X be such that g/~;sr-il, /gp^y-il and let 

ƒ: J?—»f, g: F—>J? be the maps which cover/ , g. Since g / c ^ - i l there 
is a homotopy, Ö^P*-1--»*, such that do=-gf\f\PN"\ ö i - X ' J P ^ 1 . 
I t follows from (7.1) that Oopo — dipo = xo. Let 0t be lifted into the 
homotopy, St: P*-1—>jf, such that Öopo^o, Otp~ph. I t follows from 
(7.1) that Öo^lA' l P»-1 and that 0i = wX'| i5*-1, where u\ t->X is a 
transformation in the covering group. Hence it follows from (7.2) 
and (7.3), with A-J?, h0 = gf, hi=*u, that g]~N„iu. Similarly ]% 
C^N-IV, where v: F—»F is in the group of covering transformations. 
Let | = w~1|. Then g/~tf~-il and 

f g = (v~lv)fg ~ ^ i {vlfl)jg 

(7.4) = ^ y ( | / ) l ^ t f - i v^Jug 

= z;-1/^ Ĉ JVT-̂ X 1. 

Therefore ƒ is an (iV—1)-homotopy equivalence. 
Since X'X~1 it follows that any (singular) cycle in J? is homologous 

to a continuous17 cycle. Similarly any cycle in F is homologous to a 
continuous cycle. Therefore the homomorphism Hn(^)-^Hn(T)t 

which is induced b y / , is obviously an isomorphism onto if n^N — 1. 
This completes the proof. 

8. Two lemmas. Let en (n}£ 1) be an w-cell, which is an open subset 
of a Hausdorff space, A, and let Ao — A —en. Let ên, the closure of en, 
be the image of an ^-simplex, o-n, in a map, <t>:((Tn, &n)-+(ën, ênf\4o), 
such that <t>\ (o*n — &n) is a homeomorphism onto en. Let B and B0<ZB 
be arcwise connected spaces such that 7rn(B, Bo) = 0 and let/o'. (-4, -4o) 
—»(£, JBO) be a given map. 

LEMMA 5. PAere is a homotopy, ft*(A, Ao)—*(B, 5 0) , rel. Ao, sẑ cA 
/Aa/ /ü4 C^4 o. 

Since x n ( 5 , 230) ==0 there is a homotopy, ^*:(<rn, âw)—>(5, 5 0 ) , rel. 

17 For example, to the image under X' of a continuous cycle in P. By a continuous, 
«-dimensional cycle is meant the image in a map, Kn—>X, of a cycle carried by an 
«-dimensional complex Kn. 
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<rw, such that ^op—f^p (pÇz<rn), ^I0"WCJ8O. Let gt:e
n-~*B be given by 

gts=\ff<0~1. Clearly <$rlen
% and hence g%\ en

y is single-valued. If a&n—en 

=£ n r \4o , then <})~laC.àn and g%a ~y\i<$rla—fo4>4>~la =/oa. Therefore g* 
is single-valued and hence continuous (see [8, §5]). Moreover 
gt\enr\Aos=:fo\enr\Ao. Therefore the requirements of the lemma are 
satisfied by ƒ*, which is given by ft\Ao~fo, ft\ên — gt. 

Let A be a closed subset of a separable metric space, A\ let B be 
a separable metric ANR and let folA-+B have an extension ƒ0' : -4 ' 
~»J3. Then the homotopy, ƒ*, of Lemma 5 can be extended to a 
homotopy ƒ/ :Af—*B. 

Now let 23 be a separable, metric ANR and let the homomorphism, 
in:Trn(Bo)—:>Tn(B), which is induced by the identical map i\Bo—»5, 
be an isomorphism onto for n = 1, • • • , m. Then it follows from (3.1), 
with X, Z replaced by B0, B, that x„(Z, X) = 0 for w = l, • • • , m. 
Letfotfi:K

m—^Bo be maps of an w-dimensional, simplicial complex, 
Km, into B0. Then we have: 

LEMMA 6. If ifo^^ifi (in B) thenfocxfi (in BQ). 

Let gt\Km—>B be a deformation of go— ifo into gi~ifi and let 
g:2£wX/-».B be given by g(*, /)=g<* (x£Km). Let Cn = (ifwX0) 
U t i ^ X - O U C f i ^ X l ) . Since 7rn(B, 5 0 ) = 0 ( » « 1 , • • • , m) it fol­
lows from repeated applications of Lemma 5, with ên = cr?~"1X -ÎT, where 
<7?~\ OjJ""1! • • • are the (n — l)-simplexes in Km, that g is homotopic, 
rel. CK>X0)U(.K>X1), to a map g ' r i ^ X l - ^ , such that g'CmCB0. 
Let £ r + 1 = ^ r X J (*»1 , 2, • • • ). Then g ' J ^ + 1 C £ o and g ' | Ê r + 1 is 
contractible in B. Since im'7rOT(-So)~>7rm(B) is an isomorphism it fol­
lows that g'\È?+1 is contractible in Bo* Therefore there is a map 
hi:Em+1->Bo such that hp^g'p if pEK+\ Let f:KmXl-»B0 be 
given by j f e - g ' p if p€Cm, fp^fop if pEK+\ Then ft:K

m-*B0, 
given hyftx—f(x, t), is a homotopy of ƒ o into / i , which completes the 
proof. 
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MAGDALEN COLLEGE, OXFORD UNIVERSITY 

TOPOLOGICAL CHARACTERIZATION OF FIELDS 
WITH VALUATIONS 

DANIEL ZELINSKY1 

1. Introduction. A topological field is a (commutative) field which 
is also a topological space satisfying the separation axiom To, and in 
which addition, subtraction and multiplication are continuous, two-
variable functions. For our purposes it is unnecessary to assume that 
division is continuous. 

If F is any field, topological or not, we define a (nonarchimedean) 
valuation of F to be a function v on F to a linearly ordered group T 
with the symbol 0 adjoined, such that 

(1) v(xy) = v(x)v(y), 

(2) v(x + y) S max [v(x), v(y)], 

(3) v(x) = 0 if and only if x = 0, 

for all #, y of F. I t is understood that for every y of I \ 0 < 7 and O7 = 7 0 
= 0. Such a valuation of a field defines a topology, with respect to 
which F is a topological field, when we specify that the neighborhoods 
of 0 in F are the sets U(y) = [tf£^|fl(#) <y], one for each 7 in I \ If 
F was a topological field to begin with and the topology defined by the 
valuation is the same as the original topology of Ff we say that the 
valuation preserves the topology of F. 

The question we intend to answer is, "Which topological fields have 
valuations preserving their topologies ?" 
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