$$C_n = \bigcup_{j=0}^n (\text{closure } R_j) \cup \{ S \sim \bigcup_{j=0}^n (\text{closure } R_j) \}.$$

Clearly, for each integer n,

$$\bigcup_{j=0}^{\infty} C_j = S. \qquad C_n \subset C_{n+1} \in F,$$

After checking the hereditariness of F, we infer from 4.2 that each open set is ϕ measurable F. Hence, if we recall 3.5, C_n is ϕ measurable F for each integer n. Thus F is ϕ convenient. Reference to 4.3 completes the proof.

University of California

ON THE DISTRIBUTION OF THE VALUES OF |f(z)|IN THE UNIT CIRCLE

ROBERT BREUSCH

- 1. Summary. Let $f(z) = 1 + a_1 z + \cdots$ be analytic for $|z| \le 1$, $f(z) \ne 1$. Then |f(z)| will be greater than 1 at some points of the unit circle, and less than 1 at others. Calling A(f) the area of the set of points within the unit circle, for which $|f(z)| \ge 1$, let α and β be the two largest non-negative constants such that $\alpha \le A(f) \le \pi \beta$, for every f(z). It is shown that $\alpha = \beta = 0$; in other words, if ϵ is arbitrarily small positive, there are functions f(z) such that $A(f) < \epsilon$, and others such that $A(f) > \pi \epsilon$. The same is true, if f(z) is restricted to polynomials $\prod_{\nu=1}^{n} (z-z_{\nu})$ with $\prod_{\nu=1}^{n} |z_{\nu}| = 1$. These statements will be proved in §2. §3 contains a few additional results, given without proofs.
- 2. **Proofs.** The statements made in the summary are contained in the following theorem.

THEOREM. Let P stand for the set of polynomials over the complex field of the form $f(z) = \prod_{\nu=1}^{n} (z-z_{\nu})$, with $\prod_{\nu=1}^{n} |z_{\nu}| = 1$; let A(f) denote the area of the set of points in the unit circle, for which $|f(z)| \ge 1$; let ϵ be an arbitrarily small positive number. Then P contains polynomials $f_1(z)$ and $f_2(z)$ such that $A(f_1) > \pi - \epsilon$, and $A(f_2) < \epsilon$.

Presented to the Society, December 31, 1947; received by the editors January 7, 1948.

PROOF. Consider $f_1(z) = 1 + Nz + z^2$, where N is a real positive number greater than 3. Then in the unit circle, $|f(z)| \ge |Nz| - 2$, which is greater than 1, if |Nz| > 3, |z| > 3/N. Thus

$$A(f) > \pi - \frac{9}{N^2} \pi,$$

and for $N > 3(\pi/\epsilon)^{1/2}$, this is greater than $\pi - \epsilon$. This proves the first part of the theorem.

To prove the second part, consider a function $F_0(z) = b_1 z + b_2 z^2 + \cdots$, analytic for $|z| \le 1$, $F(z) \ne 0$. The real and the imaginary part of a function F(z) will be designated by Re F(z) and Im F(z), respectively. Call $\overline{B}(F_0)$ the set of points in the unit circle for which Re $F_0(z) \ge 0$, and $B(F_0)$ the area of $\overline{B}(F_0)$. Let n_1 be a positive real number.

The function $F_1(z) = \exp(n_1 F_0(z)) - 1 = n_1 b_1 z + \cdots$ is again analytic for $|z| \leq 1$. Its real part is Re $F_1(z) = \exp(n_1 \operatorname{Re} F_0(z)) \cdot \cos(n_1 \operatorname{Im} F_0(z)) - 1$. Therefore Re $F_1(z)$ is positive or zero only where Re $F_0(z) \geq 0$ and $\cos(n_1 \operatorname{Im} F_0(z)) \geq \exp(-n_1 \operatorname{Re} F_0(z)) > 0$. It will be shown (see the lemma below), that for sufficiently large values of n_1 , $\cos(n_1 \operatorname{Im} F_0(z))$ is negative in a subregion of $\overline{B}(F_0)$ of area greater than $(1/3)B(F_0)$. Then $B(F_1) < (2/3)B(F_0) < (2/3)\pi$. Similarly a function $F_2(z) = \exp(n_2 F_1(z)) - 1$ may be formed such that $B(F_2) < (2/3)B(F_1) < (2/3)^2\pi$. Continuing in this way, for any arbitrarily chosen positive number ϵ , a function $F_1(z) = c_1 z + \cdots$ may be formed which is analytic for $|z| \leq 1$, and for which $B(F_1) < (2/3)^{t}\pi < \epsilon/3$, for t large enough.

Then the function $f(z) = \exp(F_t(z)) = 1 + a_1 z + \cdots$ is analytic for $|z| \le 1$, and $|f(z)| = \exp(\text{Re } F_t(z))$. Therefore $|f(z)| \ge 1$ for the same points for which $\text{Re } F_t(z) \ge 0$. If A(f) stands again for the area of the set of points in the unit circle for which $|f(z)| \ge 1$, $A(f) = B(F_t) < \epsilon/3$.

Now choose a positive number η so small that the set of points in the unit circle where $1-2\eta \leq |f(z)| \leq 1$ has an area not exceeding $\epsilon/3$. Finally choose a positive integer q so large that $|a_qz^q+a_{q+1}z^{q+1}+\cdots|<\eta$ for $|z|\leq 1$ and that $|z^q|<\eta$ for $|z|\leq 1-\epsilon/(6\pi)$. Then in the unit circle $|1+a_1z+\cdots+a_{q-1}z^{q-1}+z^q|<1-2\eta+\eta+\eta=1$, except in the two regions where either $|f(z)|\geq 1-2\eta$, or $|z|>1-\epsilon/(6\pi)$. The area of the first region is less than $\epsilon/3+\epsilon/3=2\epsilon/3$, and the area of the second one is less than $2\pi\cdot\epsilon/(6\pi)=\epsilon/3$. Thus $A(f_2)<\epsilon$, with $f_2(z)=1+a_1z+\cdots+a_{q-1}z^{q-1}+z^q$.

In the proof of the theorem, use has been made of the following lemma.

LEMMA. If $F(z) = b_1 z + b_2 z^2 + \cdots \neq 0$ is analytic for $|z| \leq 1$, if \overline{B} is the set of points of the unit circle for which $\text{Re } F(z) \geq 0$, and B the area of \overline{B} , and if n is a sufficiently large positive number, then $\cos(n \text{ Im } F(z))$ is negative in a subset of \overline{B} whose area is greater than B/3.

PROOF OF THE LEMMA. For $z=re^{i\theta}$, Im F(z) is a function $g_r(\theta)$ of r and θ . Choose a positive number m so small that the absolute value of $g_r'(\theta) = \partial/\partial \theta$ (Im F(z)) will be not less than m except in a subset of \overline{B} whose area is less than B/12. In other words, if \overline{B}' is the set of points in the unit circle where Re $F(z) \ge 0$ and $|g_r'(\theta)| \ge m$, then B', the area of \overline{B}' , will be between 11B/12 and B.

Call M the largest value of $|g'(\theta)|$ in $|z| \le 1$, T the largest value of $|g''(\theta)|$ in $|z| \le 1$, and S the largest number of intersections between the boundary of \overline{B}' and any of the circles $r = \text{constant} \le 1$. For every r, this number of intersections is not greater than the sum of the numbers of intersections between r = const. and the three curves Re F(z) = 0; $\partial/\partial\theta$ (Im F(z)) = +m; $\partial/\partial\theta$ (Im F(z)) = -m. Thus a finite value of S certainly exists. Therefore we know that, for every r,

(1)
$$m \leq |g'_r(\theta)| \leq M$$
, and $|g''_r(\theta)| \leq T$, in \overline{B}' .

(2) \overline{B}' contains less than S separate intervals of the circumference of the circle r = constant.

The subscript r in $g_r(\theta)$ will be omitted from here on.

Let (σ, τ) ($\sigma \leq \theta \leq \tau$) be one of the intervals mentioned in (2). Then $g'(\theta)$ is either not less than m throughout (σ, τ) , or not greater than -m throughout. Assume $g'(\theta) \geq m$ in (σ, τ) . Choose a positive number n, and call $\theta_1, \theta_2, \cdots, \theta_s$ the values of θ in (σ, τ) for which $\cos(ng(\theta)) = 0$ ($\sigma \leq \theta_1 < \theta_2 < \cdots < \theta_s \leq \tau$). Assume for the present that $s \geq 2$. Then

(3)
$$ng(\theta_{i+1}) - ng(\theta_i) = \pi$$
, for $i = 1, 2, \dots, s-1$.

In the subinterval (θ_i, θ_{i+1}) , $g(\theta) = g(\theta_i) + (\theta - \theta_i)g'(\overline{\theta})$, with $\theta_i \leq \overline{\theta} \leq \theta$. Since $g'(\overline{\theta})$ differs from $(g(\theta_{i+1}) - g(\theta_i))/(\theta_{i+1} - \theta_i)$ absolutely by less than $(\theta_{i+1} - \theta_i) \cdot \max g''(\theta)$,

$$g(\theta) = g(\theta_i) + (\theta - \theta_i) \frac{g(\theta_{i+1}) - g(\theta_i)}{\theta_{i+1} - \theta_i} + \kappa(\theta_{i+1} - \theta_i)^2 T, \text{ with } |\kappa| < 1,$$

or, using (3),

$$ng(\theta) = ng(\theta_i) + \frac{\pi(\theta - \theta_i)}{\theta_{i+1} - \theta_i} + n\kappa(\theta_{i+1} - \theta_i)^2 T.$$

Since $\cos(ng(\theta_i)) = 0$, $ng(\theta_i) = 2q\pi \mp \pi/2$ (q = integer). Here the upper or the lower sign applies according to whether $\cos(ng(\theta))$ is positive or negative throughout (θ_i, θ_{i+1}) . Thus

$$\cos(ng(\theta)) = \cos\left[\mp \frac{\pi}{2} + \frac{\pi(\theta - \theta_i)}{\theta_{i+1} - \theta_i} + \kappa n(\theta_{i+1} - \theta_i)^2 T\right]$$

$$= \pm \sin\left[\frac{\pi(\theta - \theta_i)}{\theta_{i+1} - \theta_i} + \kappa n(\theta_{i+1} - \theta_i)^2 T\right]$$

$$= \pm \sin\frac{\pi(\theta - \theta_i)}{\theta_{i+1} - \theta_i} + \kappa' n(\theta_{i+1} - \theta_i)^2 T \text{ with } |\kappa'| \leq |\kappa| < 1.$$

Therefore

(4)
$$\int_{\theta_{i}}^{\theta_{i+1}} \cos (ng(\theta)) d\theta = \pm \frac{2}{\pi} (\theta_{i+1} - \theta_{i}) + \lambda_{i} n(\theta_{i+1} - \theta_{i})^{3} T,$$
 with $|\lambda_{i}| < 1$.

For any θ -interval (γ, δ) , let $I_{\gamma\delta}$ stand for the sum of the lengths of all those subintervals of (γ, δ) , where $\cos(ng(\theta))$ is negative. Then $(\delta-\gamma)-I_{\gamma\delta}$ is equal to the sum of the lengths of the subintervals of (γ, δ) , where $\cos(ng(\theta))$ is positive.

From (4) follows

$$\int_{\theta_1}^{\theta_s} \cos (ng(\theta)) d\theta = \frac{2}{\pi} \left[(\theta_s - \theta_1 - I_{\theta_1 \theta_s}) - I_{\theta_1 \theta_s} \right] + \lambda (s - 1) n T \cdot \max (\theta_{i+1} - \theta_i)^3 \quad \text{with } |\lambda| < 1.$$

According to (1), $m \le (g(\theta_{i+1}) - g(\theta_i))/(\theta_{i+1} - \theta_i) \le M$. Therefore, and because of (3),

(5)
$$\frac{\pi}{nM} \le \theta_{i+1} - \theta_i \le \frac{\pi}{nm}$$
for $i = 1, 2, \dots, s - 1$, and $s - 1 \le \frac{\tau - \sigma}{\pi/nM} < 2nM$.

Similarly, since $ng(\theta_1) - ng(\sigma) < \pi$, and $ng(\tau) - ng(\theta_s) < \pi$:

(5')
$$\theta_1 - \sigma < \frac{\pi}{nm}$$
, and $\tau - \theta_s < \frac{\pi}{nm}$

Thus $|\lambda(s-1)nT \max (\theta_{i+1}-\theta_i)^3| < 2nMnT\pi^3/(nm)^3 = 2\pi^3MT/(nm^3)$, and

$$\int_{\theta_1}^{\theta_s} \cos (ng(\theta)) d\theta = \frac{4}{\pi} \left[\frac{\theta_s - \theta_1}{2} - I_{\theta_1 \theta_s} \right] + \lambda' \frac{2\pi^3 MT}{nm^3},$$
with $|\lambda'| < 1$.

Therefore $(4/\pi)[(\tau-\sigma)/2-I_{\sigma\tau}]$ differs from $\int_{\theta_1}^{\theta_2} \cos(ng(\theta))d\theta$ absolutely by less than $(2/\pi)(\theta_1-\sigma+\tau-\theta_2)+2\pi^3MT/(nm^3)$, or finally by (5')

(6)
$$\left| \int_{\theta_1}^{\theta_0} \cos \left(n g(\theta) \right) d\theta - \frac{4}{\pi} \left[\frac{\tau - \sigma}{2} - I_{\sigma \tau} \right] \right| < \frac{C_1}{n},$$

where $C_1 = 4/m + 2\pi^3 MT/m^3$ is independent of r and n. On the other hand, if $s \ge 3$, for $i = 2, 3, \dots, s-1$:

$$\int_{\theta_{i-1}}^{\theta_{i+1}} \cos (ng(\theta)) d\theta = \int_{g(\theta_{i-1})}^{g(\theta_{i+1})} \cos (ng) \frac{d\theta}{dg} dg,$$
$$\frac{d\theta}{dg} = \left(\frac{d\theta}{dg}\right)_{\theta_{i}} + (g(\theta) - g(\theta_{i})) \left(\frac{d^{2}\theta}{dg^{2}}\right)_{\theta_{i}},$$

with $\bar{\theta}$ between θ_i and θ .

By (1), $|d^2\theta/dg^2| = |g''(\theta)/(g'(\theta))^3| \le T/m^3$, and by (3), for $\theta_{i-1} \le \theta \le \theta_{i+1}$, $|g(\theta) - g(\theta_i)| \le \pi/n$. Therefore

$$\int_{\theta_{i-1}}^{\theta_{i+1}} \cos (ng(\theta)) d\theta = \left(\frac{d\theta}{dg}\right)_{\theta_i} \cdot \int_{g(\theta_{i-1})}^{g(\theta_{i+1})} \cos (ng) dg + \mu 2 \frac{\pi^2}{n^2} \frac{T}{m^3},$$
with $|\mu| < 1$.

Since $ng(\theta_{i-1})$ and $ng(\theta_{i+1})$ differ by 2π ,

$$\int_{g(\theta_{i-1})}^{g(\theta_{i+1})} \cos(ng) dg = 0, \text{ and } \left| \int_{\theta_{i-1}}^{\theta_{i+1}} \cos(ng(\theta)) d\theta \right| < \frac{2\pi^2 T}{n^2 m^3}.$$

Thus

(7)
$$\left| \int_{\theta_1}^{\theta_s} \cos(ng(\theta)) d\theta \right| < (\theta_s - \theta_{s-1}) + \frac{s-1}{2} \frac{2\pi^2 T}{n^2 m^3} < \frac{\pi}{nm} + \frac{2\pi^2 MT}{nm^3} = \frac{C_2}{n},$$

according to (5). Formula (7) is obviously also correct if s=2. The term $\theta_s - \theta_{s-1}$ may be omitted if s is odd. The constant $C_2 = \pi/m + 2\pi^2 MT/m^3$ is again independent of r and n.

Combining (6) and (7) we get

(8)
$$\left|\frac{\tau-\sigma}{2}-I_{\sigma\tau}\right|<\frac{C}{n}, \text{ with } C=\frac{\pi}{4}\left(C_1+C_2\right).$$

In the derivation of (8) it has been assumed that $s \ge 2$, that there are at least two values of θ in (σ, τ) for which $\cos(ng(\theta)) = 0$. If there is only one such value in (σ, τ) , or none at all, then by (5')

$$\left|\frac{\tau-\sigma}{2}-I_{\sigma\tau}\right| \leq \frac{1}{2}\left(\tau-\sigma\right) < \frac{1}{2}2\frac{\pi}{mn} < \frac{C}{n}, \text{ since } \frac{\pi}{m} < \frac{\pi}{4}C_1 < C.$$

If $g'(\theta) \leq -m$ throughout (σ, τ) , the same conclusion is reached in a similar manner.

Thus (8) is correct for any interval (σ, τ) .

From (2) and (8) follows: for any value of r between 0 and 1, the sum of the lengths of all the θ -intervals within \overline{B}' where \cos (n Im F(z)) is negative differs from half the sum of the total lengths of the θ -intervals within \overline{B}' by less than SC/n. Therefore the area of the subset of \overline{B}' formed by the points for which \cos (n Im F(z)) is negative differs from B'/2 by less than $(SC/n) \cdot \int_0^1 r \, dr = SC/(2n)$. Take n so large that SC/(2n) < B/12. Then, since B' > 11B/12, \cos (n Im F(z)) is negative in a subset of \overline{B}' (and therefore of \overline{B}) whose area is greater than 11B/24 - B/12 > B/3. This completes the proof of the lemma.

3. Some additional remarks. Let $f(z) = \coprod_{\nu=1}^{n} (z-z_{\nu})$ be further restricted by the condition that $|z_{\nu}| = 1$ for $\nu = 1, 2, \dots, n$. Let α and β again be the two largest possible numbers such that $\alpha \leq A(f) \leq \pi - \beta$ for every f(z) of this form. In this case the values of α and β are still unknown. It can be shown that $\alpha = \beta$, and that $\alpha \leq .43$. Dr. Erdös¹ quotes Mr. Eröd as possessing an unpublished proof that $\alpha > 0$.

It is possible, however, to construct polynomials $f(z) = \prod_{\nu=1}^{n} (z - z_{\nu})$ with $\prod_{\nu=1}^{n} |z_{\nu}| = 1$ such that $A(f) < \epsilon_{1}$, and $1 - \epsilon_{2} \le |z_{\nu}| \le 1 + \epsilon_{2}$ for $\nu = 1, 2, \dots, n$, where ϵ_{1} and ϵ_{2} are arbitrarily small positive numbers which are independent of each other.

If $F(z) = b_1 z + \cdots$ is analytic for $|z| \le 1$ and such that the set B(F) and its complement in the unit circle are both simply connected regions, then it can be proved that there exist positive numbers α such that for every F(z) of this kind $\alpha \le B(F) \le \pi - \alpha$. The largest possible value of α in this case can be shown to be not less than .141 nor greater than .283.

AMHERST COLLEGE

¹ Paul Erdös, Note on some elementary properties of polynomials, Bull. Amer. Math. Soc. vol. 46 (1940) p. 954.