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Cn « U (closure Rj) \J {$ ~ U (closure J?/)}. 

Clearly, for each integer n, 

Ö C , » S . C n C C n + 1 e F , 

After checking the hereditariness of F, we infer from 4.2 that each 
open set is 0 measurable F. Hence, if we recall 3.5, Cnis</> measurable 
F for each integer n. Thus F is <j> convenient. Reference to 4.3 com­
pletes the proof. 
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1. Summary. Let f(z)~l+aiz+ • • • be analytic for | s | <J1, 
f{z) ^ 1. Then \f(z) | will be greater than 1 at some points of the unit 
circle, and less than 1 at others. Calling A (ƒ) the area of the set of 
points within the unit circle, for which \f(z)\ g£l, let a and 0 be the 
two largest non-negative constants such that aSA(f)^ir—^f for 
every f (z). It is shown that a:=/? = 0; in other words, if € is arbitrarily 
small positive, there are f unctions ƒ (z) such that A(f) <e, and others 
such that A(f)>ir~ e. The same is true, if f(z) is restricted to poly­
nomials II?-1(3 — zv) with U ? « i W = L These statements will be 
proved in §2. §3 contains a few additional results, given without 
proofs. 

2. Proofs. The statements made in the summary are contained in 
the following theorem. 

THEOREM. Let P stand for the set of polynomials over the complex 
field of the form f(z) = H?m 1O3 -~2*) » w^ II?-11s" I ~ 1 î ^ A (ƒ) denote 
the area of the set of points in the unit circle, for which \f(z) | *£ 1 ; let e 
be an arbitrarily small positive number. Then P contains polynomials 
fi(z) andf2(z) such that A(fi) >r—€, and A(ƒ2) <e. 
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PROOF. Consider/I (3) = 1 +Nz+z2, where N is a real positive num­
ber greater than 3. Then in the unit circle, \f(z) | à | Nz\ — 2, which is 
greater than 1, if \Nz\ > 3 , \z\ >3/N. Thus 

9 
A(J) > 7T IT, 

JV2 

and for N>3(r/e)1,2
1 this is greater than 7r — e. This proves the first 

part of the theorem. 
To prove the second part, consider a function Fo(z) ~biZ-\-biZ2 

+ • • • 1 analytic for \z\ ^ 1 , F(z)?£0. The real and the imaginary 
part of a function F(z) will be designated by Re F(z) and Im F(z)t 

respectively. Call ~B(F0) the set of points in the unit circle for which 
Re Fo(z)*zQ, and B(F0) the area of T3(F0). Let n\ be a positive real 
number. 

The function Fi(z)—exp (nxFo(z)) — l~nibiZ+ • • • is again an­
alytic for \z\ :§1. Its real part is Re Fi(z)=exp (tiiRe Fo(z)) 
•cos (nilmFo(z)) — 1. Therefore Re F\(z) is positive or zero only where 
Re F0(z)^0 and cos (« Jm F0(z)) ^ e x p ( - n i R e F0(z)) > 0 . It will be 
shown (see the lemma below), that for sufficiently large values of n\% 

cos (n\ Im Fo(z)) is negative in a subregion of ^(FQ) of area greater 
than (1/3)B(F0). Then J5(J\) < (2/3)B(F0) < (2/3)TT. Similarly a func­
tion F2(z) =exp (^2^1(3)) — ! may be formed such that B(F2) 
<(2/3)B(Fi) < ( 2 / 3 ) V . Continuing in this way, for any arbitrarily 
chosen positive number e, a function Ft(z) — CiZ+ • • • may be formed 
which is analytic for \z\ ^ 1 , and for which B(Ft) <(2/3)tT<e/31 for 
t large enough. 

Then the f unction ƒ (3) = exp (Ft(z)) = l + a i s + • • • is analytic for 
\z\ ^ 1 , and | /(2) | =exp (Re Ft(z)). Therefore \f(z)\ ^ 1 for the same 
points for which Re Ft(z) ^ 0 . If A (J) stands again for the area of the 
set of points in the unit circle for which \f(z) | g£ 1, A (ƒ) ~B(Ft) <e/3. 

Now choose a positive number rj so small that the set of points in 
the unit circle where 1 — 2rj :§ \f(z) | ^ 1 has an area not exceeding e/3. 
Finally choose a positive integer q so large that \aqz

q-\-aq+iZq+1 

+ • • • I <rj for \z\ ^ 1 and that j s 9 | <rj for | s | â l — e/(6w). Then in 
the unit circle | l + # i 2 + • • • +aq-.iz

q~~1+zq\ < 1 — 277+77+17 = 1, ex­
cept in the two regions where either | / (^) | §;1 — 2 77, or \z\ > 1 
—ç/(07r). The area of the first region is less than e /3+€/3 = 2e/3, 
and the area of the second one is less than 27r-€/(67r) = e / 3 . Thus 
A(f%)<e, with f2(z) = l+aiz+ • • • +aq^zq"1+zq. 

In the proof of the theorem, use has been made of the following 
lemma. 
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LEMMA. If F(z)=biz+b2z*+ • • • ^ 0 is analytic for \z\ g*lf if B 
is the set of points of the unit circle for which Re F{z) ^ 0 , and B the 
area of B, and if n is a sufficiently large positive number', then cos 
(n Im F(z)) is negative in a subset of 5 whose area is greater than B/3. 

PROOF OF THE LEMMA. For z — re®, Im F(z) is a function gr(0) of 
r and 0. Choose a positive number m so small that the absolute value 
°f gr (0) = 3/d0(Im F{z)) will be not less than m except in a subset of 
B whose area is less than J B / 1 2 . In other words, if Bf is the set of 
points in the unit circle where Re F(z) ^ 0 and \g} (0)| ^ m , then B ' , 
the area of 5 ' , will be between 1 1 J B / 1 2 and J3. 

Call M the largest value of \gl (0)| in \z\ é l , T the largest value 
°f |&"(0)| m \Z\ ^1» a n d 5 the largest number of intersections be­
tween the boundary of W and any of the circles r = c o n s t a n t ^ l . For 
every r, this number of intersections is not greater than the sum of the 
numbers of intersections between r~ const, and the three curves 
Re F(z) = 0; d/dd (Im F(z)) = +m; d/dOQLm F(z)) =-m. Thus a finite 
value of S certainly exists. Therefore we know that, for every r, 

(1) fff g | gr (0) I =§ Mt and J g'r' (6) | g Z\ in B'. 

(2) W contains less than S separate intervals of the circumference of 
the circle r = constant. 

The subscript r in gr(0) will be omitted from here on. 
Let (<r, r) (ö*g0gr) be one of the intervals mentioned in (2). Then 

g'(0) is either not less than m throughout (cr, T ) , or not greater than 
— m throughout. Assume g'{Q) ^m in (<r, r ) . Choose a positive num­
ber n, and call 0i, 02, • • • , 08 the values of 0 in (cr, r) for which 
cos (ng(6)) = 0 ((T^0i<02< • • • < 0 « â r ) . Assume for the present that 
s^2. Then 

(3) ng(6i+i) - »g(0,-) = ir, for i = 1, 2, • • • , s - 1. 

In the subinterval (0*, 0,+i), g(0) = g(0i) + (0-0i)g'(0), with 0 4 ^ 0 ^ 0 . 
Since g'(0) differs from (g(0*+i) —g(6i))/(0i+i—0i) absolutely by less 
than (0i+i-0i) • max g"(0), 

g(fi) = *(*<) + (0 ~ e<) g{9if ~~ *(g<) + icto+i - 0 t)
2r, with U | < l, 

or, using (3), 

TT(0 - 0<) 
»«W - ng(fii) + - + »K(0,+I - 0,)2T. 

0*4-1 — 0* 
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Since cos (ng(di)) = 0, ng(di) **2qic + Tr/2 (g = integer). Here the upper 
or the lower sign applies according to whether cos (ng(0)) is positive 
or negative throughout (0*, 0»+i). Thus 

, , v r * *(fi - 0*) i 
cos (»g(0)) » cos T — + + Kn(Pi+i - 0i)2r 

L 2 0;+i — 0» J 
f>(0 - Si) 1 

= ± sin — + mifii+i - Oi)*T 
L 0i+i — 0* J 

« ± sin ~ + /c'w(0*+i - 0 t)
2r with | K' | S | K | < 1. 

0*+i — 0i 

cos (ng(0))dd = ± — (0,+x - 00 + A,n(0m - Oi)*T, 
Bi 1C 

Therefore 

with | A* | < 1. 

For any 0-interval (7, 5), let Iys stand for the sum of the lengths of 
all those subintervals of (7, 6), where cos (ng(0)) is negative. Then 
(Ô— 7) — Iyt is equal to the sum of the lengths of the subintervals of 
(7, 8), where cos (ng(0)) is positive. 

From (4) follows 

ƒ•*« 2 

cos (ng(Ô))dd = — [(0. - 0! - J M . ) - I M J 
+ \(s - l > r - m a x (0*+i - Si)3 with | X | < 1. 

According to (1), w^(g(0< + x) -g(0O) / (0<+i -^ ) iM. Therefore, and 
because of (3), 

—•" s 0<+l — 0* ^ 

T — (T 

for i = 1, 2, • » • , $ — 1, and 5 — 1 2» — < 2^M. 
7T/WM 

Similarly, since ng(0i) —ng(<r) <7T, and ng{r) -*ftg(0«) <w: 

, ,* ** * 
(50 0i — cr < ; and r — 0, < 

nm nm 
Thus | X ( ^ - l ) « r m a x ( 0 t + i - 0 t )

3 | <2nMnT^/{nmY^2^MT/{nm%)i 

and 
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re* , N 4 r » ( - « i 1 , 2ir*MT 
cos (ng(6))dd - - — J M , + X' — , 

J 0! 7T L 2 J WW3 

with | X' | < 1. 

Therefore (4/7r) [(r—cr)/2—J^] differs from /*J cos (ng(0))dd ab­
solutely by less than (2/w)(0i—<r+T—0a)+2irzMT/(nmz)t or finally 
by (50 

I r '• 4 r r - ( r 11 Cj 
I cos (ng(6))dd — ƒ I < _ 

I •/ 0i f L 2 J I w 
where Ci = 4 / m + 2 7 r W 7 7 w 3 is independent of r and n. 

On the other hand, if s à 3, for i = 2, 3, • • • , 5 — 1 : 

ƒ• 0 m /» <7(0*+i) ^ 

cos {ng{6))dB « I cos (ttg) — <2g, 
<20 / d » \ / d 2 0 \ 

with 0 between 0,- and 0. 
By (1), | < « W | - | «"(*)/(« W | ^ r / m 3 , and by (3), for * « 

^e^di+u \g(0)-g(fii)\ a i r / » . Therefore 

cos (»*(*))<» - ( — ) • 1 cos (ng)dg + M2 — — > 

with | M | < 1. 

Since ng(0i„i) and wg(0»+1) differ by 2T, 

2T2T 
cos (ng)dg = 0, and I cos (ng(6))d$ < 

*rwö 

Thus 

s - 1 2TT2J I /» 0, 

I cos (ng(6))d6 
(7) 

< (0, - 0,_x) + 
« w 

7T 27T2ilfr Ci 

<—- + j r " - ' 
ww tint* n 

according to (5). Formula (7) is obviously also correct if 5 = 2. The 
term 0s--0«_i may be omitted if s is odd. The constant C2=7r/m 
+2T2MT/MZ is again independent of r and n. 

Combining (6) and (7) we get 
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(8) 
C w 

< — > with C = — (C1 + C2). 
n 4 

In the derivation of (8) it has been assumed that s a 2, that there 
are at least two values of 0 in (<r, r) for which cos (ng(6)) =0 . If there 
is only one such value in (<7, r ) , or none at all, then by (5') 

— <T | 1 1 7T C 7 T 7 T 

/<rr g — (r - <r) < — 2 < — ; since — < —Ci < C. 
2 I 2 2 »w w w 4 

If g'(0) û —m throughout (o*, r ) , the same conclusion is reached in 
a similar manner. 

Thus (8) is correct for any interval (<r, r ) . 
From (2) and (8) follows: for any value of r between 0 and 1, the 

sum of the lengths of all the 0-intervals within 5 'where cos (n Im F(z)) 
is negative differs from half the sum of the total lengths of the 
0-intervals within 5 ' by less than SC/n. Therefore the area of the 
subset of W formed by the points for which cos (n Im F(z)) is nega­
tive differs from B'/2 by less than (SC/n) • J > dr = SC/(2n). Take n so 
large that SC/(2n) <B/12. Then, since B'> 1JLJ3/12, cos (n lm F (z)) 
is negative in a subset of 5 ' (and therefore of B) whose area is greater 
than 115/24 — B/\2>B/3. This completes the proof of the lemma. 

3. Some additional remarks. Le t / (z )=XI ï - i (2—21») be further re­
stricted by the condition that \zv\ = 1 for *> = 1, 2, • * • , n. Let a and 
j8 again be the two largest possible numbers such that a^A(j) 
^7T— j8 for every/(^) of this form. In this case the values of a and j8 
are still unknown. It can be shown that ce=/3, and that a^.43. Dr. 
Erdös1 quotes Mr. Eröd as possessing an unpublished proof that 
a > 0 . 

I t is possible, however, to construct polynomials ƒ (z) = II?» 1(2 — **) 
with II?»i W —I s u c h that -4(f) <€i, and 1 — e2^ |s„| ^ l + e 2 for 
p = l , 2 , • • • , » , where €1 and e2 are arbitrarily small positive numbers 
which are independent of each other. 

If F(z)=biz+ - • • is analytic for \z\ ^ 1 and such that the set 
B(F) and its complement in the unit circle are both simply connected 
regions, then it can be proved that there exist positive numbers a such 
that for every F(z) of this kind a^B(F) ^7r—a. The largest possible 
value of a in this case can be shown to be not less than .141 nor greater 
than .283. 

AMHERST COLLEGE 

1 Paul Erdös, Note on some elementary properties of polynomials, Bull. Amer. Math. 
Soc. vol. 46 (1940) p. 954. 


