PARACOMPACTNESS AND PRODUCT SPACES
A. H. STONE

A topological space is called paracompact (see [2])! if (i) it is a
Hausdorff space (satisfying the T, axiom of [1]), and (ii) every open
covering of it can be refined by one which is “locally finite” (=neigh-
bourhood-finite; that is, every point of the space has a neighbourhood
meeting only a finite number of sets of the refining covering). J.
Dieudonné has proved [2, Theorem 4] that every separable metric
(=metrisable) space is paracompact, and has conjectured that this
remains true without separability. We shall show that this is indeed
the case. In fact, more is true: paracompactness is identical with the
property of “full normality” introduced by J. W. Tukey [5, p. 53].
After proving this (Theorems 1 and 2 below) we apply Theorem 1 to
obtain a necessary and sufficient condition for the topological product
of uncountably many metric spaces to be normal (Theorem 4).

For any open covering W= { W.} of a topological space, the star
(x, W) of a point x is defined to be the union of all the sets W, which
contain x. The space is fully normal if every open covering U of it has
a “A-refinement” W—that is, an open covering for which the stars
(«, W) form a covering which refines V.

THEOREM 1. Every fully normal T space is paracompact.

Let S be such a space, and let U= { U} be a given open covering
of S. (We must construct a locally finite refinement of U. Note that
S is normal [5, p. 49] and thus satisfies the T; axiom.)

There exists an open covering U= { U} which A-refines U, and
by induction we obtain open coverings Ur={U*} of S such that
Un+l A-refines U* (=1, 2, -+ +, to »). For brevity we write, for

any XCS,
(X, n) = star of X in U~
= union of all sets U meeting X

¢y

(roughly corresponding to the #1/27-neighbourhood of X” in a metric
space), and

2 X, —n)=S—-(S— X, n).
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Thus, since the set (X, ») is evidently open, (X, —=n) is closed.

Further, it is easily seen that

3) (X, —n) = {x| (x, ) C X},

where (x, #), in conformity with (1), denotes the star of x in U?; and
it readily follows that

4) (X, —n), n) C X.
From the definition of A-refinement we have
(5) (X, v+ 1,2+ 1) C(X,n).

The trivial relations XCV—(X, n)C(Y, n), m=n—(X, m)

C(X, n), XC(X, n), and yE (x, n)>x E(y, n) will also be useful.
For convenience, suppose the sets U, of U are well-ordered.
Now define, for each «,

6) Vi= (Ua —1), Vo= (Vs 2), and Vo= (Vo ,n) (n2Z2).
Thus VACVEC ---,and V" is open if n=2; hence, writing

U.V2= "V, we have that V, is open. An easy induction (using (4)
and (5)) shows that (V3, n) CU,; hence

(M Vo C U
Further,
8) Uv, =3,

since, given x&.S, we have (x, 1) € some U, (for V! A-refines V),
so that, by (3), xEViC V.
We also have

%) Given x € V,, there exists #>0 such that (x, #) C V.

For there exists # =2 such that x € V2!, and then (x, #) CV2C V.
Next we define, for each #>0, a transfinite sequence of closed sets
H,., by setting

(10) Hpy = (Vly ""n)r Hyo = (Va Y Hnﬂr _n)-
f<a
Then we have:
(11) If a % v, no U” & U* can meet both H,, and H,,.

For we can suppose vy <a. Then if U* meets Hya, let xE UMM\ Hpa;
from (3) and (10), UrC Va— Up<caH,s, and so is disjoint from H,,.
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12) UH,.=S.

For, given x&.S, (8) shows that there will be a first ordinal « for
which xE€ V,; and from (9) there exists #>0 such that (x, #) CVa.
We assert x & H,,. For suppose not. Then, from (10) and (3), (x, »)
contains a point vy not in V,— Us<e Hyg; and it follows that yEH,,
for some B<a. But then x & (H,s, ) C((Vp, —n), n) C Vg (from (4));
and this contradicts the definition of a.

Write
(13) E,o = (Hna; n -+ 3), Gra = (Hna’ n -+ 2)-

Thus HpoCEneC EpaCGra, and, as is easily seen from (11),

(14) If y5#a, no Urt2&Ur+2 can meet both G, and G;,.

Write F,=U.E,, Then F, is closed. For suppose xEF, Then
every open neighbourhood N(x) of x meets some E,, and so meets some
E..; but if N(x) is contained in the neighbourhood (x, #-+2) of x,
N(x) can meet at most one set E.o (from (14)), so that x EE,, CF..

Finally we define

W1a=GIm Wna=Gna-(F1UF2\J"’UFn—1) (n>1);

thus the sets W, are open. We shall show that they form the desired
refinement.

In the first place, Us,o Woa=S. For, given x €S, we have x Esome
H,, (from (12)) CE,,; let m be the smallest integer for which there
exists E,sDx. Then x EGug, and xE F\U - + \UFpy, s0 that x E Wig.

NeXty WnaCGnaC(Hnay n) C((Vay —n), %)C Vac Ua (USing (4)
and (7)). Thus the sets W,, form an open covering W of S which
refines V. All that remains to be proved is that W is “locally finite.”
Given x &S, we have as before that x Esome Hyq, s0 (%, #+3) CEne
CF,, and so is certainly disjoint from Wy if 2>#n. Further, for a
given k<n, we have (x, n+3) CU2CU**? so (13) shows that
(%, n+3) can meet Wig for at most one value of 8. Thus the neigh-
bourhood (x, 74 3) of x meets at most # of the sets Wjg; and the proof
is complete.

REMARK. The locally finite refinement @ thus constructed has the
additional property that it consists of a countable number of families
of sets (formed by the sets W,., % fixed), the sets of each family
having pairwise disjoint closures.

CorOLLARY 1. Every metric space is paracompact.
For a metric space is fully normal [5, p. 53].
COROLLARY 2. The topological product of a meiric space and a com-
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pact (=bicompact) Hausdorff space is paracompact, and therefore
normal.2

This follows from Theorems 5 and 1 of [2].
THEOREM 2. Every paracompact space is fully normal (and T4).

Let S be a paracompact space, and let U= { U.} be a given locally
finite open covering of S. It will evidently suffice to prove that U
has a A-refinement.

Open sets X, exist, for each «, such that X.C U, and UX,=S.
(This follows by an easy transfinite induction argument from the
fact that S is normal; cf. [2, Theorems 1 and 6].) By hypothesis, each
x&.S has an open neighbourhood V(x) meeting U, only for a finite
set of a's, say for a €A (x). Let B(x) be the set of those a’s& 4 (x) for
which x &€ U,, and let C(x) be the set of a’s €A (x) for which x&X,;
clearly B(x)\UC(x) =4 (x). Define

W) = V@) NN{U |« € B@}NN{ES —X) | a EC(D)].

Evidently W(x) is an open set containg x: hence the sets
{ W(x) |x€S } form an open covering @ of S. To verify that @
is a A-refinement of U, let y&S be given. There exists a set XD y;
we shall show that the star (y, W) C Usg—that is, that if y& W(x)
then W(x) CUs. For if yEW(x) then W(x) meets Xz and so clearly
BEA(x) and B&EC(x). Thus BEB(x), which implies W(x) CUs, by
construction.

Now let N denote the space of positive integers—a countable
discrete set—and consider the product T=]]Nx» \EA) of uncount-
ably many copies of N. More precisely, the points of T are the map-
pings x={£} of the uncountable set A in N (each NEA being
mapped on the integer £EN), and a typical basic neighbourhood
U of x in T is obtained by choosing a finite set R(U) CA and defining
U to consist of all points y={m} such that m =& for all \ER(U).
R(U) will be called the “set of coordinates restricted in U.”

THEOREM 3. The space T is not normal.

For each positive integer %, let A* be the set of all points x= {£}
€T satisfying: for each positive integer # other than %, there is at
most one A\ for which & =n.

2 It can be shown that the topological product of a metric space and a normal
countably compact space is normal, though not necessarily paracompact. (A space
is “countably compact” if every infinite subset has a limit point in the space; cf.
[5, p. 42]. For metric spaces this is equivalent to compactness.)
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It is easy to see that the sets A* are closed and pairwise disjoint.
Hence, if T were normal, there would exist disjoint open sets U, V
such that UDA?Y, VOA42 We shall show that this leads to a con-
tradiction.

We shall define inductively sequences of points x,EA41, of integers
0<m(l)<m(2)< - -+, and of elements N\, EA, as follows. Define x,;
to be the point {£ } for which & =1 (all A\€A). Evidently x;€4'CU,
so x has a basic neighbourhood U;C U. Let R(U,) consist of the m(1)
elements N\ (1=5k=m(1)). When x, and Ay, Az * + +, Amwmy have been
defined, in such a way that x,EA4! and A\, - - +, Ay are the co-
ordinates restricted in a basic neighbourhood U,C U of x,, we define
X1 by: E=Fk if A=N\y (12k=m(n)), and & =1 otherwise. Clearly
xnp1EAY, so that x,4;1 has a basic neighbourhood U,1CU; and we
can always suppose that R(U,+1) contains R(U,) as a proper subset.
Let R(Uyn41) have m(n+1) elements, and enumerate the elements of

R(Unt1) —R(U,) as Mmmy+1y * * * » Mmmsny. The induction is now com-
plete.
Now define a point y = {,’h} by:m=kif A=\ (k=1,2, -+ -, to )

and 7, =2 otherwise. Clearly y&A42CV, so y has a basic neighbour-
hood VoCC V. Since R(Vs) is finite, there exists an # such that My EA
—®R(Vs) whenever k>m(n). Finally, define 2= {\} by:

OHo==Fk if X=X\ with 2 £ m(n),
=1 if N=N, with m(n) <k=mmn+1), and
& = 2 otherwise.

We evidently have & U, 1N\ VoC UNYV, giving the desired con-
tradiction.

CoRrROLLARY. If a product of nonempty T spaces is normal, all bui
at most a countable number of the factor spaces must be countably
compact.?

For otherwise their product would contain a closed subset homeo-
morphic with T'; and a closed subset of a normal space is normal.

THEOREM 4. The following statements about a product of nonempty
metric spaces are equivalent.

(i) The product is normal.

(ii) The product is fully normal (or paracompact).

(iii) At most N of the factor spaces are noncompact.

In fact, (ii)—(@) [2, Theorem 1], (i)—(iii) (Theorem 3, Corollary),
and (iii)—(ii) from Theorem 1, Corollary 2, since the compact
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factors have a compact product® and the product of the remaining
factors is metrisable.

REMARK. In Theorem 4, the hypothesis that the factor spaces be
metric cannot be much weakened. This is shown by an example of
R. H. Sorgenfrey (see [4]), in which the product of a paracompact
(and thus fully normal) space with itself is not even normal.
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TRANSITIVITY AND EQUICOI‘TTIN'.UITY1
W. H. GOTTSCHALK

Let X be a metric space with metric p and let G be a group of
homeomorphisms on X. If x €X and g&G, then xg denotes the image
of the point x under the transformation g. If x&X and FCG, then
xF denotes U,crxg. G is said to be algebraically transitive provided
that xG =X for some x €X (and therefore for every x €X). G is said
to be topologically transitive provided that (xG)* =X for some xEX,
where the star denotes the closure operator. G is said to be equi-
continuous provided that to each €>0 there corresponds 6 >0 such
that x, yEX with p(x, y) <§ implies p(xg, y2) <e (¢EG).

With respect to the following lemma compare [4].2

LeMMA. If X is a complete separable metric space and also a mulii-
plicative group, if the center of X is dense in X and if the function xy
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