PARACOMPACTNESS AND PRODUCT SPACES

A. H. STONE

A topological space is called paracompact (see [2])¹ if (i) it is a Hausdorff space (satisfying the T₂ axiom of [1]), and (ii) every open covering of it can be refined by one which is "locally finite" (= neighbourhood-finite; that is, every point of the space has a neighbourhood meeting only a finite number of sets of the refining covering). J. Dieudonné has proved [2, Theorem 4] that every separable metric (= metrisable) space is paracompact, and has conjectured that this remains true without separability. We shall show that this is indeed the case. In fact, more is true: paracompactness is identical with the property of "full normality" introduced by J. W. Tukey [5, p. 53]. After proving this (Theorems 1 and 2 below) we apply Theorem 1 to obtain a necessary and sufficient condition for the topological product of uncountably many metric spaces to be normal (Theorem 4).

For any open covering $W = \{W_{\alpha}\}$ of a topological space, the *star* (x, \mathcal{W}) of a point x is defined to be the union of all the sets W_{α} which contain x. The space is *fully normal* if every open covering \mathcal{U} of it has a " Δ -refinement" \mathcal{W} —that is, an open covering for which the stars (x, \mathcal{W}) form a covering which refines \mathcal{U} .

THEOREM 1. Every fully normal T_1 space is paracompact.

Let S be such a space, and let $\mathcal{U} = \{U_{\alpha}\}$ be a given open covering of S. (We must construct a locally finite refinement of \mathcal{U} . Note that S is normal [5, p. 49] and thus satisfies the T_2 axiom.)

There exists an open covering $U^1 = \{U^1\}$ which Δ -refines U, and by induction we obtain open coverings $U^n = \{U^n\}$ of S such that U^{n+1} Δ -refines U^n $(n=1, 2, \cdots, to \infty)$. For brevity we write, for any $X \subset S$,

(1)
$$(X, n) = \text{star of } X \text{ in } U^n$$

$$= \text{union of all sets } U^n \text{ meeting } X$$

(roughly corresponding to the "1/2"-neighbourhood of X" in a metric space), and

(2)
$$(X, -n) = S - (S - X, n).$$

Presented to the Society, October 25, 1947; received by the editors October 25, 1947.

¹ Numbers in brackets refer to the bibliography at the end of the paper.

Thus, since the set (X, n) is evidently open, (X, -n) is closed. Further, it is easily seen that

$$(3) (X, -n) = \{x \mid (x, n) \subset X\},\$$

where (x, n), in conformity with (1), denotes the star of x in U^n ; and it readily follows that

$$(4) ((X, -n), n) \subset X.$$

From the definition of Δ -refinement we have

(5)
$$((X, n+1), n+1) \subset (X, n).$$

The trivial relations $X \subset Y \to (X, n) \subset (Y, n), m \ge n \to (X, m) \subset (X, n), \overline{X} \subset (X, n), \text{ and } y \in (x, n) \leftrightarrow x \in (y, n) \text{ will also be useful.}$ For convenience, suppose the sets U_{α} of \mathcal{U} are well-ordered. Now define, for each α ,

(6)
$$V_{\alpha}^{1} = (U_{\alpha}, -1), V_{\alpha}^{2} = (V_{\alpha}^{1}, 2), \text{ and } V_{\alpha}^{n} = (V_{\alpha}^{n-1}, n) \qquad (n \ge 2).$$

Thus $V_{\alpha}^{1} \subset V_{\alpha}^{2} \subset \cdots$, and V_{α}^{n} is open if $n \geq 2$; hence, writing $\bigcup_{n} V_{\alpha}^{n} = V_{\alpha}$, we have that V_{α} is open. An easy induction (using (4) and (5)) shows that $(V_{\alpha}^{n}, n) \subset U_{\alpha}$; hence

$$(7) V_{\alpha} \subset U_{\alpha}.$$

Further,

(8)
$$U V_{\alpha} = S,$$

since, given $x \in S$, we have $(x, 1) \in \text{some } U_{\alpha}$ (for $U^1 \Delta$ -refines U), so that, by (3), $x \in V_{\alpha}^1 \subset V_{\alpha}$.

We also have

(9) Given $x \in V_{\alpha}$, there exists n > 0 such that $(x, n) \subset V_{\alpha}$.

For there exists $n \ge 2$ such that $x \in V_{\alpha}^{n-1}$, and then $(x, n) \subset V_{\alpha}^{n} \subset V_{\alpha}$. Next we define, for each n > 0, a transfinite sequence of closed sets $H_{n\alpha}$, by setting

(10)
$$H_{n1} = (V_1, -n), \qquad H_{n\alpha} = \left(V_{\alpha} - \bigcup_{\beta < \alpha} H_{n\beta}, -n\right).$$

Then we have:

(11) If $\alpha \neq \gamma$, no $U^n \in U^n$ can meet both $H_{n\alpha}$ and $H_{n\gamma}$.

For we can suppose $\gamma < \alpha$. Then if U^n meets $H_{n\alpha}$, let $x \in U^n \cap H_{n\alpha}$; from (3) and (10), $U^n \subset V_{\alpha} - \bigcup_{\beta < \alpha} H_{n\beta}$, and so is disjoint from $H_{n\gamma}$.

$$\bigcup_{n,\alpha} H_{n\alpha} = S.$$

For, given $x \in S$, (8) shows that there will be a first ordinal α for which $x \in V_{\alpha}$; and from (9) there exists n > 0 such that $(x, n) \subset V_{\alpha}$. We assert $x \in H_{n\alpha}$. For suppose not. Then, from (10) and (3), (x, n) contains a point y not in $V_{\alpha} - \bigcup_{\beta < \alpha} H_{n\beta}$; and it follows that $y \in H_{n\beta}$ for some $\beta < \alpha$. But then $x \in (H_{n\beta}, n) \subset ((V_{\beta}, -n), n) \subset V_{\beta}$ (from (4)); and this contradicts the definition of α .

Write

(13)
$$E_{n\alpha} = (H_{n\alpha}, n+3), \quad G_{n\alpha} = (H_{n\alpha}, n+2).$$

Thus $H_{n\alpha} \subset E_{n\alpha} \subset \overline{E_{n\alpha}} \subset G_{n\alpha}$, and, as is easily seen from (11),

(14) If
$$\gamma \neq \alpha$$
, no $U^{n+2} \subset U^{n+2}$ can meet both $G_{n\alpha}$ and $G_{n\gamma}$.

Write $F_n = \bigcup_{\alpha} \overline{E_{n\alpha}}$. Then F_n is closed. For suppose $x \in \overline{F_n}$. Then every open neighbourhood N(x) of x meets some $\overline{E_{n\alpha}}$ and so meets some $E_{n\alpha}$; but if N(x) is contained in the neighbourhood (x, n+2) of x, N(x) can meet at most one set $E_{n\alpha}$ (from (14)), so that $x \in \overline{E_{n\alpha}} \subset F_n$. Finally we define

$$W_{1\alpha}=G_{1\alpha}, \qquad W_{n\alpha}=G_{n\alpha}-(F_1\cup F_2\cup\cdots\cup F_{n-1}) \qquad (n>1);$$

thus the sets $W_{n\alpha}$ are open. We shall show that they form the desired refinement.

In the first place, $\bigcup_{n,\alpha} W_{n\alpha} = S$. For, given $x \in S$, we have $x \in$ some $H_{n\alpha}$ (from (12)) $\subset \overline{E_{n\alpha}}$; let m be the smallest integer for which there exists $\overline{E_{m\beta}} \ni x$. Then $x \in G_{m\beta}$, and $x \notin F_1 \cup \cdots \cup F_{m-1}$, so that $x \in W_{m\beta}$.

Next, $W_{n\alpha} \subset G_{n\alpha} \subset (H_{n\alpha}, n) \subset ((V_{\alpha}, -n), n) \subset V_{\alpha} \subset U_{\alpha}$ (using (4) and (7)). Thus the sets $W_{n\alpha}$ form an open covering \mathcal{W} of S which refines \mathcal{U} . All that remains to be proved is that \mathcal{W} is "locally finite." Given $x \in S$, we have as before that $x \in \text{some } H_{n\alpha}$, so $(x, n+3) \subset E_{n\alpha} \subset F_n$, and so is certainly disjoint from $W_{k\beta}$ if k > n. Further, for a given $k \leq n$, we have $(x, n+3) \subset U^{n+2} \subset U^{k+2}$, so (13) shows that (x, n+3) can meet $W_{k\beta}$ for at most one value of β . Thus the neighbourhood (x, n+3) of x meets at most n of the sets $W_{k\beta}$; and the proof is complete.

REMARK. The locally finite refinement \mathcal{W} thus constructed has the additional property that it consists of a countable number of families of sets (formed by the sets $W_{n\alpha}$, n fixed), the sets of each family having pairwise disjoint closures.

COROLLARY 1. Every metric space is paracompact.

For a metric space is fully normal [5, p. 53].

COROLLARY 2. The topological product of a metric space and a com-

pact (=bicompact) Hausdorff space is paracompact, and therefore normal.2

This follows from Theorems 5 and 1 of [2].

THEOREM 2. Every paracompact space is fully normal (and T_1).

Let S be a paracompact space, and let $U = \{U_{\alpha}\}$ be a given *locally finite* open covering of S. It will evidently suffice to prove that U has a Δ -refinement.

Open sets X_{α} exist, for each α , such that $\overline{X}_{\alpha} \subset U_{\alpha}$ and $\bigcup X_{\alpha} = S$. (This follows by an easy transfinite induction argument from the fact that S is normal; cf. [2, Theorems 1 and 6].) By hypothesis, each $x \in S$ has an open neighbourhood V(x) meeting U_{α} only for a finite set of α 's, say for $\alpha \in A(x)$. Let B(x) be the set of those α 's $\in A(x)$ for which $x \in U_{\alpha}$, and let C(x) be the set of α 's $\in A(x)$ for which $x \in \overline{X}_{\alpha}$; clearly $B(x) \cup C(x) = A(x)$. Define

$$W(x) = V(x) \cap \bigcap \{U_{\alpha} \mid \alpha \in B(x)\} \cap \bigcap \{(S - \overline{X}_{\alpha}) \mid \alpha \in C(x)\}.$$

Evidently W(x) is an open set containg x; hence the sets $\{W(x) \mid x \in S\}$ form an open covering \mathcal{W} of S. To verify that \mathcal{W} is a Δ -refinement of \mathcal{U} , let $y \in S$ be given. There exists a set $X_{\beta} \ni y$; we shall show that the star $(y, \mathcal{W}) \subset U_{\beta}$ —that is, that if $y \in W(x)$ then $W(x) \subset U_{\beta}$. For if $y \in W(x)$ then W(x) meets \overline{X}_{β} and so clearly $\beta \in A(x)$ and $\beta \notin C(x)$. Thus $\beta \in B(x)$, which implies $W(x) \subset U_{\beta}$, by construction.

Now let N denote the space of positive integers—a countable discrete set—and consider the *product* $T = \coprod N_{\lambda}$ ($\lambda \in \Lambda$) of uncountably many copies of N. More precisely, the points of T are the mappings $x = \{\xi_{\lambda}\}$ of the uncountable set Λ in N (each $\lambda \in \Lambda$ being mapped on the integer $\xi_{\lambda} \in N$), and a typical basic neighbourhood U of x in T is obtained by choosing a *finite* set $R(U) \subset \Lambda$ and defining U to consist of all points $y = \{\eta_{\lambda}\}$ such that $\eta_{\lambda} = \xi_{\lambda}$ for all $\lambda \in R(U)$. R(U) will be called the "set of coordinates restricted in U."

THEOREM 3. The space T is not normal.

For each positive integer k, let A^k be the set of all points $x = \{\xi_{\lambda}\}$ $\in T$ satisfying: for each positive integer n other than k, there is at most one λ for which $\xi_{\lambda} = n$.

² It can be shown that the topological product of a metric space and a normal countably compact space is normal, though not necessarily paracompact. (A space is "countably compact" if every infinite subset has a limit point in the space; cf. [5, p. 42]. For metric spaces this is equivalent to compactness.)

It is easy to see that the sets A^k are closed and pairwise disjoint. Hence, if T were normal, there would exist disjoint open sets U, V such that $U \supset A^1$, $V \supset A^2$. We shall show that this leads to a contradiction.

We shall define inductively sequences of points $x_n \in A^1$, of integers $0 < m(1) < m(2) < \cdots$, and of elements $\lambda_n \in \Lambda$, as follows. Define x_1 to be the point $\{\xi_{\lambda}\}$ for which $\xi_{\lambda} = 1$ (all $\lambda \in \Lambda$). Evidently $x_1 \in A^1 \subset U$, so x has a basic neighbourhood $U_1 \subset U$. Let $\Re(U_1)$ consist of the m(1) elements λ_k ($1 \le k \le m(1)$). When x_{α} and λ_1 , $\lambda_2 \cdots$, $\lambda_{m(n)}$ have been defined, in such a way that $x_n \in A^1$ and $\lambda_1, \dots, \lambda_{m(n)}$ are the coordinates restricted in a basic neighbourhood $U_n \subset U$ of x_n , we define x_{n+1} by: $\xi_{\lambda} = k$ if $\lambda = \lambda_k$ ($1 \le k \le m(n)$), and $\xi_{\lambda} = 1$ otherwise. Clearly $x_{n+1} \in A^1$, so that x_{n+1} has a basic neighbourhood $U_{n+1} \subset U$; and we can always suppose that $\Re(U_{n+1})$ contains $\Re(U_n)$ as a proper subset. Let $\Re(U_{n+1})$ have m(n+1) elements, and enumerate the elements of $\Re(U_{n+1}) - \Re(U_n)$ as $\lambda_{m(n)+1}, \dots, \lambda_{m(n+1)}$. The induction is now complete.

Now define a point $y = \{\eta_{\lambda}\}$ by: $\eta_{\lambda} = k$ if $\lambda = \lambda_{k}$ $(k = 1, 2, \dots, to \infty)$ and $\eta_{\lambda} = 2$ otherwise. Clearly $y \in A^{2} \subset V$, so y has a basic neighbourhood $V_{0} \subset V$. Since $\mathcal{R}(V_{0})$ is finite, there exists an n such that $\lambda_{k} \in \Lambda - \mathcal{R}(V_{0})$ whenever k > m(n). Finally, define $z = \{\zeta_{\lambda}\}$ by:

```
\zeta_{\lambda} = k \text{ if } \lambda = \lambda_{k} \text{ with } k \leq m(n),

\zeta_{\lambda} = 1 \text{ if } \lambda = \lambda_{k} \text{ with } m(n) < k \leq m(n+1), \text{ and } \zeta_{\lambda} = 2 \text{ otherwise.}
```

We evidently have $z \in U_{n+1} \cap V_0 \subset U \cap V$, giving the desired contradiction.

COROLLARY. If a product of nonempty T_1 spaces is normal, all but at most a countable number of the factor spaces must be countably compact.²

For otherwise their product would contain a closed subset homeomorphic with T; and a closed subset of a normal space is normal.

THEOREM 4. The following statements about a product of nonempty metric spaces are equivalent.

- (i) The product is normal.
- (ii) The product is fully normal (or paracompact).
- (iii) At most ℵ 0 of the factor spaces are noncompact.

In fact, (ii) \rightarrow (i) [2, Theorem 1], (i) \rightarrow (iii) (Theorem 3, Corollary), and (iii) \rightarrow (ii) from Theorem 1, Corollary 2, since the compact

factors have a compact product³ and the product of the remaining factors is metrisable.⁴

REMARK. In Theorem 4, the hypothesis that the factor spaces be metric cannot be much weakened. This is shown by an example of R. H. Sorgenfrey (see [4]), in which the product of a paracompact (and thus fully normal) space with itself is not even normal.

BIBLIOGRAPHY

- 1. P. Alexandroff and H. Hopf, Topologie I, Berlin, 1935.
- 2. J. Dieudonné, Une généralisation des espaces compacts, J. Math. Pures Appl. vol. 23 (1944) pp. 65-76.
 - 3. C. Kuratowski, Topologie I, Warsaw 1933.
- 4. R. H. Sorgenfrey, On the topological product of paracompact spaces, Bull. Amer. Math. Soc. vol. 53 (1947) pp. 631, 632.
- 5. J. W. Tukey, Convergence and uniformity in general topology, Annals of Mathematics Studies, no. 2, Princeton, 1940.

TRINITY COLLEGE, UNIVERSITY OF CAMBRIDGE

- ⁸ A theorem of Tychonoff; see, for example, [5, p. 75] for a simple proof.
- 4 See, for example, [3, p. 88].

TRANSITIVITY AND EQUICONTINUITY1

W. H. GOTTSCHALK

Let X be a metric space with metric ρ and let G be a group of homeomorphisms on X. If $x \in X$ and $g \in G$, then xg denotes the image of the point x under the transformation g. If $x \in X$ and $F \subset G$, then xF denotes $\bigcup_{g \in F} xg$. G is said to be algebraically transitive provided that xG = X for some $x \in X$ (and therefore for every $x \in X$). G is said to be topologically transitive provided that $(xG)^* = X$ for some $x \in X$, where the star denotes the closure operator. G is said to be equicontinuous provided that to each $\epsilon > 0$ there corresponds $\delta > 0$ such that $x, y \in X$ with $\rho(x, y) < \delta$ implies $\rho(xg, yg) < \epsilon$ $(g \in G)$.

With respect to the following lemma compare [4].2

LEMMA. If X is a complete separable metric space and also a multiplicative group, if the center of X is dense in X and if the function xy

Presented to the Society, December 31, 1947; received by the editors November 29, 1947.

¹ Prepared under the sponsorship of the Office of Naval Research.

² Numbers in brackets refer to the bibliography at the end of the paper.